Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 761: 143323, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33213912

RESUMO

Over 50% of new refuse truck sales have been compressed natural gas (CNG). Compared to diesel, CNG is less expensive on diesel gallon equivalent (dge) basis. This study quantifies the real-world fuel use and tailpipe exhaust emissions from three front- and three side-loader refuse trucks, each with a spark ignition CNG engine, three-way catalyst, and similar gross weight. Measurements were made at 1 Hz using a portable emissions measurement system (PEMS). Inter-cycle and inter-vehicle variability is quantified. Effect of vehicle weight was analyzed and comparisons were made with MOVES predicted cycle average emission rates. In total, about 220,000 s of data covering 490 miles of operation were recorded. The average fuel economy was 1.9 miles per dge. On average the trucks spent 53% of time in idle, which includes trash collection activity. The average speeds were 10 mph and 5 mph, for front- and side-loader trucks, respectively. Overall, compared to side-loader trucks, front-loader trucks had 55% better fuel economy and 60% lower emission rates. Compared to diesel trucks, CNG truck cycle average NOx and PM emission rates, at 1.2 g/mile and 0.006 g/mile respectively, were substantially lower while CO and HC rates, at 29 g/mile and 6 g/mile respectively, were considerably higher. Fuel use and CO2 emissions rates increased by 10% due to increase in truck weight during trash collection, while CO emissions rates increased by up to 30%. Compared to measured values, MOVES estimated cycle average fuel use and CO2 emissions were 25% lower, CO emissions are 70% lower, and NOx emissions were 200% higher. Results from this study can be used to improve solid waste life cycle and tailpipe emission factor models and, when combined with previous studies on diesel refuse trucks, evaluate the effect on fuel use and emissions from adoption of CNG refuse trucks.

2.
J Air Waste Manag Assoc ; 65(3): 306-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25947127

RESUMO

UNLABELLED: The objectives of this study were to quantify real-world activity, fuel use, and emissions for heavy duty diesel roll-off refuse trucks; evaluate the contribution of duty cycles and emissions controls to variability in cycle average fuel use and emission rates; quantify the effect of vehicle weight on fuel use and emission rates; and compare empirical cycle average emission rates with the U.S. Environmental Protection Agency's MOVES emission factor model predictions. Measurements were made at 1 Hz on six trucks of model years 2005 to 2012, using onboard systems. The trucks traveled 870 miles, had an average speed of 16 mph, and collected 165 tons of trash. The average fuel economy was 4.4 mpg, which is approximately twice previously reported values for residential trash collection trucks. On average, 50% of time is spent idling and about 58% of emissions occur in urban areas. Newer trucks with selective catalytic reduction and diesel particulate filter had NOx and PM cycle average emission rates that were 80% lower and 95% lower, respectively, compared to older trucks without. On average, the combined can and trash weight was about 55% of chassis weight. The marginal effect of vehicle weight on fuel use and emissions is highest at low loads and decreases as load increases. Among 36 cycle average rates (6 trucks×6 cycles), MOVES-predicted values and estimates based on real-world data have similar relative trends. MOVES-predicted CO2 emissions are similar to those of the real world, while NOx and PM emissions are, on average, 43% lower and 300% higher, respectively. The real-world data presented here can be used to estimate benefits of replacing old trucks with new trucks. Further, the data can be used to improve emission inventories and model predictions. IMPLICATIONS: In-use measurements of the real-world activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks can be used to improve the accuracy of predictive models, such as MOVES, and emissions inventories. Further, the activity data from this study can be used to generate more representative duty cycles for more accurate chassis dynamometer testing. Comparisons of old and new model year diesel trucks are useful in analyzing the effect of fleet turnover. The analysis of effect of haul weight on fuel use can be used by fleet managers to optimize operations to reduce fuel cost.


Assuntos
Poluentes Atmosféricos/química , Gasolina , Veículos Automotores , Eliminação de Resíduos , Emissões de Veículos , Monitoramento Ambiental/métodos , Fatores de Tempo
3.
Environ Sci Technol ; 48(14): 8258-65, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24945058

RESUMO

As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.


Assuntos
Gasolina , Modelos Teóricos , Veículos Off-Road , Neve , Emissões de Veículos/análise , Monóxido de Carbono/análise , Cinética , Modelos Lineares , Óxidos de Nitrogênio/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...