Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38790212

RESUMO

Leaf rust caused by the pathogen Puccinia triticina (Pt) is a destructive fungal disease of wheat that occurs in almost all wheat-growing areas across the globe. Genetic resistance has proven to be the best solution to mitigate the disease. Wheat breeders are continuously seeking new diversified and durable sources of resistance to use in developing new varieties. We developed recombinant inbred line (RIL) populations from two leaf rust-resistant genotypes (Kenya Kudu and AUS12568) introduced from Kenya to identify and characterize resistance to Pt and to develop markers linked closely to the resistance that was found. Our studies detected four QTL conferring adult plant resistance (APR) to leaf rust. Two of these loci are associated with known genes, Lr46 and Lr68, residing on chromosomes 1B and 7B, respectively. The remaining two, QLrKK_2B and QLrAus12568_5A, contributed by Kenya Kudu and AUS12568 respectively, are putatively new loci for Pt resistance. Both QLrKK_2B and QLrAus12568_5A were found to interact additively with Lr46 in significantly reducing the disease severity at adult plant growth stages in the field. We further developed a suite of six closely linked markers within the QLrAus12568_5A locus and four within the QLrKK_2B region. Among these, markers sunKASP_522 and sunKASP_524, flanking QLrAus12568_5A, and sunKASP_536, distal to QLrKK_2B, were identified as the most closely linked and reliable for marker-assisted selection. The markers were validated on a selection of 64 Australian wheat varieties and found to be polymorphic and robust, allowing for clear allelic discrimination. The identified new loci and linked molecular markers will enable rapid adoption by breeders in developing wheat varieties carrying diversified and durable resistance to leaf rust.


Assuntos
Resistência à Doença , Doenças das Plantas , Puccinia , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Puccinia/patogenicidade , Quênia , Marcadores Genéticos , Mapeamento Cromossômico , Basidiomycota/patogenicidade , Genótipo , Cromossomos de Plantas/genética
2.
Phytopathology ; 108(4): 495-509, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29135360

RESUMO

Plants have developed complex defense mechanisms to protect themselves against pathogens. A wide-host-range fungus, Austropuccinia psidii, which has caused severe damage to ecosystems and plantations worldwide, is a major threat to Australian ecosystems dominated by members of the family Myrtaceae. In particular, the east coast wetland foundation tree species Melaleuca quinquenervia, appears to be variably susceptible to this pathogen. Understanding the molecular basis of host resistance would enable better management of this rust disease. We identified resistant and susceptible individuals of M. quinquenervia and explored their differential gene expression in order to discover the molecular basis of resistance against A. psidii. Rust screening of germplasm showed a varying degree of response, with fully resistant to highly susceptible individuals. We used transcriptome profiling in samples collected before and at 5 days postinoculation (dpi). Differential gene expression analysis showed that numerous defense-related genes were induced in susceptible plants at 5 dpi. Mapping reads against the A. psidii genome showed that only susceptible plants contained fungal-derived transcripts. Resistant plants exhibited an overexpression of candidate A. psidii resistance-related genes such as receptor-like kinases, nucleotide-binding site leucine-rich repeat proteins, glutathione S-transferases, WRKY transcriptional regulators, and pathogenesis-related proteins. We identified large differences in the expression of defense-related genes among resistant individuals.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Melaleuca/genética , Doenças das Plantas/imunologia , Transcriptoma , Austrália , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melaleuca/imunologia , Melaleuca/microbiologia , Modelos Biológicos , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Análise de Sequência de RNA , Árvores
3.
Annu Rev Phytopathol ; 53: 565-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047566

RESUMO

Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.


Assuntos
Basidiomycota/fisiologia , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Basidiomycota/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...