Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(28): 20032-20047, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911835

RESUMO

The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.

2.
Pharmaceutics ; 16(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794307

RESUMO

In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.

3.
RSC Adv ; 14(7): 4406-4415, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312718

RESUMO

Nanoscale science represents a thriving field of research for environmental applications within materials science. This study focuses on the fabrication of pure and La-doped nickel oxide (NiO) nanostructures with varying concentrations (1.0, 2.0, 3.0, and 4.0 wt%) of lanthanum using a facile sol-gel technique. This study explores the structural, morphological, chemical composition, and optical characteristics of the resulting pure and La-doped NiO nanostructures. Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, UV-visible spectroscopy, and photoluminescence (PL) spectroscopy were used for material analysis. The observed trend in the energy band gap (Eg) values demonstrates a continuous decrease up to a La-doping concentration of 3 wt% in NiO. However, after this concentration (at 4.0 wt%), there is a noticeable increase in the energy band gap. At lower La-doping concentrations (up to 3 wt%), the incorporation of La ions into the NiO lattice may result in the formation of defects and oxygen vacancies. The presence of these imperfections may lead to new energy levels into the band gap, resulting in partial filling and a subsequent reduction in the band gap. Beyond a specific doping concentration (e.g., 3 wt%), excess La atoms may aggregate or cluster inside the NiO lattice. This agglomeration may cause structural distortions, strain, and disturbances in the crystal lattice, resulting in an increase in the band gap. The 3 wt% La-doped NiO sample demonstrated a notable 84% degradation efficiency of the synthesized nanomaterials coupled with its inherent stability, highlighting its dual attributes of effective pollutant removal and sustained performance. Furthermore, the cyclic stability of the optimized nanostructure is anticipated to be ∼77.42% after six cycles, suggesting promising future applications in photocatalysis.

4.
ACS Omega ; 9(2): 2536-2546, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250432

RESUMO

Cobalt-doped zinc ferrite is a contemporary material with significant structural and magnetic characteristics. Our study explores the magnetic properties of cobalt-substituted zinc ferrite (ZnxCo1-xFe2O4), synthesized via a simple sol-gel method. By varying the cobalt ratio from 0 to 0.5, we found that zinc substitution impacts both the magnetization and lattice parameters. FTIR analysis suggested the presence of functional groups, particularly depicting an M-O stretching band, within octahedral and tetrahedral clusters. X-ray diffraction analysis confirmed the phase purity and cubic structure. The synthesized materials exhibited an average particle size of 24-75 nm. Scanning electron microscopy revealed the morphological properties, confirming the formation of truncated octahedral particles. In order to determine the stability, mass loss (%), and thermal behavior, a thermal analysis (thermogravimetric analysis (TGA)/differential thermal analysis (DTA)) was performed. The magnetic properties of the synthesized ferrites were confirmed via a vibrating sample magnetometer (VSM). Finally, the highest saturated magnetization and lowest coercivity values were observed with higher concentrations of the cobalt dopant substituting zinc. The synthesized nanomaterials have good stability as compared to other such materials and can be used for magnetization in the near future.

5.
Biomedicines ; 11(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37893060

RESUMO

A "building block" is a key component that plays a substantial and critical function in the pharmaceutical research and development industry. Given its structural versatility and ability to undergo substitutions at both the amino and carboxyl groups, para-aminobenzoic acid (PABA) is a commonly used building block in pharmaceuticals. Therefore, it is great for the development of a wide range of novel molecules with potential medical applications. Anticancer, anti-Alzheimer's, antibacterial, antiviral, antioxidant, and anti-inflammatory properties have been observed in PABA compounds, suggesting their potential as therapeutic agents in future clinical trials. PABA-based therapeutic chemicals as molecular targets and their usage in biological processes are the primary focus of this review study. PABA's unique features make it a strong candidate for inclusion in a massive chemical database of molecules having drug-like effects. Based on the current literature, further investigation is needed to evaluate the safety and efficacy of PABA derivatives in clinical investigations and better understand the specific mechanism of action revealed by these compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...