Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 48(5): e67-e85, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33577091

RESUMO

Over the last few years, magnetic resonance image-guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems. Therefore, this report provides an overview of QA equipment and techniques for mechanical, dosimetric, and imaging performance of such systems and recommendation of the QA procedures, particularly for a 1.5T MR-linac device. An overview of the system design and considerations for QA measurements, particularly the effect of the machine geometry and magnetic field on the radiation beam measurements is given. The effect of the magnetic field on measurement equipment and methods is reviewed to provide a foundation for interpreting measurement results and devising appropriate methods. And lastly, a consensus overview of recommended QA, appropriate methods, and tolerances is provided based on conventional QA protocols. The aim of this consensus work was to provide a foundation for QA protocols, comparative studies of system performance, and for future development of QA protocols and measurement methods.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Radioterapia Guiada por Imagem , Campos Magnéticos , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med Biol ; 55(8): N201-10, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20348610

RESUMO

The characteristics of an Elekta Precise treatment machine with a gating interface were investigated. Three detectors were used: a Farmer ionization chamber, a MatriXX ionization chamber array and an in-house, single pulse-measurement ionization chamber (IVC). Measurements were made of dosimetric accuracy, flatness and symmetry characteristics and duty cycle for a range of beam-on times and gating periods. Results were compared with a standard ungated delivery as a reference. For all beam-on times, down to 0.5 s, dosimetric differences were below +/-1% and flatness and symmetry parameter variations were below +/-1.5%. For the shorter beam-on times the in-house detector deviated from the other two detectors, suggesting that this device should be used in conjunction with other detectors for absolute dosimetry purposes. However, it was found to be useful for studying gated beam characteristics pulse by pulse.


Assuntos
Radioterapia/instrumentação , Radioterapia/métodos , Respiração , Tomografia Computadorizada Quadridimensional , Humanos , Movimento , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Med Phys ; 36(9): 4197-212, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19810494

RESUMO

The task group (TG) for quality assurance of medical accelerators was constituted by the American Association of Physicists in Medicine's Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance and Outcome Improvement Subcommittee. The task group (TG-142) had two main charges. First to update, as needed, recommendations of Table II of the AAPM TG-40 report on quality assurance and second, to add recommendations for asymmetric jaws, multileaf collimation (MLC), and dynamic/virtual wedges. The TG accomplished the update to TG-40, specifying new test and tolerances, and has added recommendations for not only the new ancillary delivery technologies but also for imaging devices that are part of the linear accelerator. The imaging devices include x-ray imaging, photon portal imaging, and cone-beam CT. The TG report was designed to account for the types of treatments delivered with the particular machine. For example, machines that are used for radiosurgery treatments or intensity-modulated radiotherapy (IMRT) require different tests and/or tolerances. There are specific recommendations for MLC quality assurance for machines performing IMRT. The report also gives recommendations as to action levels for the physicists to implement particular actions, whether they are inspection, scheduled action, or immediate and corrective action. The report is geared to be flexible for the physicist to customize the QA program depending on clinical utility. There are specific tables according to daily, monthly, and annual reviews, along with unique tables for wedge systems, MLC, and imaging checks. The report also gives specific recommendations regarding setup of a QA program by the physicist in regards to building a QA team, establishing procedures, training of personnel, documentation, and end-to-end system checks. The tabulated items of this report have been considerably expanded as compared with the original TG-40 report and the recommended tolerances accommodate differences in the intended use of the machine functionality (non-IMRT, IMRT, and stereotactic delivery).


Assuntos
Aceleradores de Partículas/instrumentação , Segurança de Equipamentos , Humanos , Controle de Qualidade , Radiometria/métodos , Cintilografia/instrumentação , Cintilografia/métodos , Radioterapia/instrumentação , Radioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...