Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(21): 7372-7379, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33960993

RESUMO

Two new ternary thiogallates in the A5GaS4 (A = Li (i) and Na (ii)) series have been synthesized for the first time employing a gas passing route using oxide precursors and a high temperature solid state route using stoichiometric combinations of elements, respectively. Li5GaS4 crystallizes in the P21/m space group and the structure is built up of layers of corner sharing tetrahedra of LiS4 and GaS4 stacked along the a-axis and the octahedrally coordinated Li ions residing in the interlayer space. Na5GaS4 crystallizes in the Pbca space group and the structure consists of isolated (GaS4)5- tetrahedra held together by charge balancing sodium ions in distorted tetrahedral and octahedral coordination geometries. Measurements of ionic conductivity of the compounds showed room temperature ionic conductivities of 1.8 × 10-7 and 4.0 × 10-7 S cm-1 with activation energies of 0.54 and 0.28 eV, respectively, for I and II. Density functional theory calculations show close agreement in structural parameters with the measured data and predict band gaps of 2.75 eV (I) and 2.70 eV (II). Single point hybrid functional calculations result in band gaps of 3.95 and 3.65 eV correspondingly, in better agreement with the experimental value of ∼4.1 eV for both. Bond valence energy landscape maps suggest the absence of any suitable diffusion path for Li in Li5GaS4. On the other hand, BVEL maps of Na5GaS4 confirm that the tetrahedrally coordinated Na ions are responsible for ionic conduction, whereas the involvement of octahedrally coordinated Na ions in the conduction process could not be discerned.

2.
Molecules ; 26(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498952

RESUMO

Herein, we report the syntheses of two lithium-vanadium oxide-fluoride compounds crystallized from the same reaction mixture through a time variation experiment. A low temperature hydrothermal route employing a viscous paste of V2O5, oxalic acid, LiF, and HF allowed the crystallization of one metastable phase initially, Li2VO0.55(H2O)0.45F5⋅2H2O (I), which on prolonged heating transforms to a chemically similar yet structurally different phase, Li3VOF5 (II). Compound I crystallizes in centrosymmetric space group, I2/a with a = 6.052(3), b = 7.928(4), c = 12.461(6) Å, and ß = 103.99(2)°, while compound II crystallizes in a non-centrosymmetric (NCS) space group, Pna21 with a = 5.1173(2), b = 8.612(3), c = 9.346(3) Å. Synthesis of NCS crystals are highly sought after in solid-state chemistry for their second-harmonic-generation (SHG) response and compound II exhibits SHG activity albeit non-phase-matchable. In this article, we also describe their magnetic properties which helped in unambiguous assignment of mixed valency of V (+4/+5) for Li2VO0.55(H2O)0.45F5⋅2H2O (I) and +4 valency of V for Li3VOF5 (II).


Assuntos
Flúor/química , Óxidos/química , Compostos de Vanádio/química , Vanádio/química , Cristalização/métodos , Lítio/química , Difração de Raios X/métodos
3.
Inorg Chem ; 58(7): 4117-4133, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888809

RESUMO

New iron phosphates with related structures have been synthesized using hydrothermal and ion-exchange routes, and their electrochemical properties were investigated. First, NaFe(HPO4)2 was synthesized employing a hydrothermal route and its structure was determined from single-crystal X-ray diffraction data. Subsequent Na+ and partial proton ion exchange with Li+ ion produced a known phase, Li2Fe(H0.5PO4)2, and complete deprotonation of Li2Fe(H0.5PO4)2 with Li+ by employing a solid-state ion-exchange route produced the new phase Li3Fe(PO4)2. The structure of the latter was solved from synchrotron powder X-ray data by employing ab initio methods. All of these phases are highly crystalline, built up of similar connectivities between FeO6 octahedra and PO4 tetrahedral units. Magnetic susceptibility measurements and room-temperature 57Fe Mössbauer spectroscopic studies confirm the 3+ oxidation state of the compounds and their antiferromagnetic ordering with Li2Fe(H0.5PO4)2 showing some interesting metamagnetic behavior. The compounds are stable up to 400 °C and undergo facile electrochemical lithium/sodium insertion through the reduction of Fe3+ to Fe2+. Galvanostatic charge-discharge studies indicate that up to 0.6 lithium ion and 0.5 sodium ion per formula unit can be inserted at average voltages of 3.0 and 2.75 V for lithium and sodium ion batteries, respectively, for NaFe(HPO4)2. The partially Li ion exchanged compound Li2Fe(H0.5PO4)2 showed better cycle life and experimentally achievable capacities up to 0.9 Li insertion with strong dependence on particle size. The electrochemical Li insertion in Li3Fe(PO4)2 was also investigated. The electrochemistry of these three related phases were compared with each other, and their mechanism of Li insertion was investigated by ex situ PXRD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...