Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 1(4): 82, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28812654

RESUMO

Speciation can involve a transition from a few genetic loci that are resistant to gene flow to genome-wide differentiation. However, only limited data exist concerning this transition and the factors promoting it. Here, we study phases of speciation using data from >100 populations of 11 species of Timema stick insects. Consistent with early phases of genic speciation, adaptive colour-pattern loci reside in localized genetic regions of accentuated differentiation between populations experiencing gene flow. Transitions to genome-wide differentiation are also observed with gene flow, in association with differentiation in polygenic chemical traits affecting mate choice. Thus, intermediate phases of speciation are associated with genome-wide differentiation and mate choice, but not growth of a few genomic islands. We also find a gap in genomic differentiation between sympatric taxa that still exchange genes and those that do not, highlighting the association between differentiation and complete reproductive isolation. Our results suggest that substantial progress towards speciation may involve the alignment of multi-faceted aspects of differentiation.

2.
PLoS One ; 3(4): e1907, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18382680

RESUMO

The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse ('speciation in reverse'). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this 'niche dimensionality' hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature.


Assuntos
Evolução Biológica , Ecologia , Insetos/fisiologia , Seleção Genética , Adaptação Biológica , Animais , Drosophila/genética , Ecossistema , Especiação Genética , Interações Hospedeiro-Parasita , Insetos/genética , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório
3.
Nature ; 417(6887): 440-3, 2002 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12024213

RESUMO

Parallel evolution of similar traits in independent populations that inhabit ecologically similar environments strongly implicates natural selection as the cause of evolution. Parallel speciation is a special form of parallel evolution where traits that determine reproductive isolation evolve repeatedly, in closely related populations, as by-products of adaptation to ecological conditions. The outcome of such parallel evolution is that ecologically divergent pairs of populations exhibit greater levels of reproductive isolation than ecologically similar pairs of populations of a similar or younger age. The parallel evolution of reproductive isolation provides strong evidence for natural selection in the process of speciation, but only one conclusive example from nature is known. Populations of the walking-stick insect Timema cristinae that use different host-plant species have diverged in body size and shape, host preference, behaviour and the relative frequency of two highly cryptic colour-pattern morphs. Here we report that divergent selection for host adaptation, and not genetic drift, has promoted the parallel evolution of sexual isolation in this species. Our findings represent a clear demonstration that host-plant adaptation can play a crucial and repeatable role in the early stages of speciation.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Ecossistema , Insetos/fisiologia , Plantas/parasitologia , Reprodução/fisiologia , Animais , California , Copulação/fisiologia , Feminino , Geografia , Interações Hospedeiro-Parasita , Masculino , Dados de Sequência Molecular , Filogenia , Seleção Genética
4.
Evolution ; 48(6): 1866-1879, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28565164

RESUMO

Gene frequencies in large populations are determined by a balance between selection and gene flow between neighborhoods of different selection regimes. This balance is affected by the area of the patches of a given selection regime relative to the gene-flow distance. If patches are small relative to gene-flow distance, similarity in the total area occupied by different patch types is a crucial condition for the stability of polymorphisms. However, if patches are larger than the gene-flow distance, then the relative area of different patch types is less important because of reduced gene flow resulting from isolation by distance. Two morphs (striped and unstriped) of the walking-stick Timema cristinae were each strongly associated with patches of distinct species of food plants on which they are most cryptic. The frequency of a morph was high on the plant on which it is most cryptic when either: (1) the area occupied by the food plant (patch) was very large; (2) the patch was completely isolated from other patches; or (3) the patch was larger than adjacent patches. Results (1) and (2) are consistent with isolation-by-distance models, and result (3) is consistent with Levene's multiple-niche polymorphism model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...