Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 2): 336-342, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372673

RESUMO

This work presents a detailed analysis of the performance of X-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) as a tool for vector reconstruction of magnetization. For this, 360° domain wall ring structures which form in a synthetic antiferromagnet are chosen as the model to conduct the quantitative analysis. An assessment is made of how the quality of the results is affected depending on the number of projections that are involved in the reconstruction process, as well as their angular distribution. For this a self-consistent error metric is developed which allows an estimation of the optimum azimuthal rotation angular range and number of projections. This work thus proposes XMCD-PEEM as a powerful tool for vector imaging of complex 3D magnetic structures.

2.
Environ Pollut ; 345: 123397, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272166

RESUMO

The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , América Latina , Águas Residuárias , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise
3.
Environ Technol ; : 1-14, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36174186

RESUMO

Forward osmosis is a water separation process that uses the natural energy of osmotic pressure to separate water from dissolved solutes through a semipermeable membrane. One of the major challenges using this process is the rejection water which contains high content of pollutants, hindering its practical application. Herein, for the first time, this work introduces a coupled electrochemical-physical process including iron-electrocoagulation/filtration/sedimentation as a cost-effective treatment to the forward osmosis reject water containing hexavalent chromium to be reclaimed. The synergistic treatment was optimized through a central composite design and response surface methodology to enhance hexavalent Cr removal and minimize operating costs, electrical energy consumption, and settled sludge volume. A 90.0% chromium removal was achieved under optimized conditions: electrolysis time of 59.7 min and current of 1.24 A (J = 6.32 mA cm-2). In addition, operating costs of 0.014 USD m-3, electrical energy consumption of 0.005 kWh m-3, and settled sludge volume of 445 mL L-1 were obtained.

4.
Chemosphere ; 306: 135530, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35792212

RESUMO

A sensitive electroanalytical method for the determination of arsenite, based on a heterostructure of aminated multiwalled carbon nanotubes and gold nanoparticles, was applied in an electrocoagulation (EC) treatment for the elimination of arsenite. A sensitive quantitative response was obtained in the determination of As3+ in a secondary effluent from a wastewater treatment plant from Santiago (Chile). The preconcentration stage was optimized through a Central Composite Face design, and the most sensitive peak current was obtained at 200 s and -600 mV of time and accumulation potential, respectively, after a differential pulse voltammetry sweep. Electroanalytical determination was possible in an interval between 42.89 and 170.00 µg L-1 with a detection limit of 0.39 µg L-1, obtaining recoveries over 99.1%. The developed method was successfully applied in an electrocoagulation treatment to remove 250 µg L-1 of arsenite from a polluted effluent in a batch system. Complete arsenite removal was achieved using a steel EC system with a current density of 6.0 mA cm-2 in less than 3 min of treatment.


Assuntos
Arsenitos , Nanopartículas Metálicas , Nanotubos de Carbono , Arsenitos/química , Técnicas Eletroquímicas , Eletrocoagulação/métodos , Eletrodos , Ouro/química
5.
ACS Nano ; 16(6): 8860-8868, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35580039

RESUMO

The fundamental limits currently faced by traditional computing devices necessitate the exploration of ways to store, compute, and transmit information going beyond the current CMOS-based technologies. Here, we propose a three-dimensional (3D) magnetic interconnector that exploits geometry-driven automotion of domain walls (DWs), for the transfer of magnetic information between functional magnetic planes. By combining state-of-the-art 3D nanoprinting and standard physical vapor deposition, we prototype 3D helical DW conduits. We observe the automotion of DWs by imaging their magnetic state under different field sequences using X-ray microscopy, observing a robust unidirectional motion of DWs from the bottom to the top of the spirals. From experiments and micromagnetic simulations, we determine that the large thickness gradients present in the structure are the main mechanism for 3D DW automotion. We obtain direct evidence of how this tailorable magnetic energy gradient is imprinted in the devices, and how it competes with pinning effects that are due to local changes in the energy landscape. Our work also predicts how this effect could lead to high DW velocities, reaching the Walker limit during automotion. This work demonstrates a possible mechanism for efficient transfer of magnetic information in three dimensions.

6.
Pathogens ; 10(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451472

RESUMO

Wastewater-based epidemiology (WBE) has a long history of identifying a variety of viruses from poliovirus to coronaviruses, including novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The presence and detection of SARS-CoV-2 in human feces and its passage into the water bodies are significant public health challenges. Hence, the hot issue of WBE of SARS-CoV-2 in the coronavirus respiratory disease (COVID-19) pandemic is a matter of utmost importance (e.g., SARS-CoV-1). The present review discusses the background, state of the art, actual status, and prospects of WBE, as well as the detection and quantification protocols of SARS-CoV-2 in wastewater. The SARS-CoV-2 detection studies have been performed in different water matrixes such as influent and effluent of wastewater treatment plants, suburban pumping stations, hospital wastewater, and sewer networks around the globe except for Antarctica. The findings revealed that all WBE studies were in accordance with clinical and epidemiological data, which correlates the presence of SARS-CoV-2 ribonucleic acid (RNA) with the number of new daily positive cases officially reported. This last was confirmed via Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) testing which unfortunately is not suitable for real-time surveillance. In addition, WBE concept may act as a faster protocol to alert the public health authorities to take administrative orders (possible re-emerging infections) due to the impracticality of testing all citizens in a short time with limited diagnostic facilities. A comprehensive and integrated review covering all steps starting from sampling to molecular detection of SARS-CoV-2 in wastewater has been made to guide for the development well-defined and reliable protocols.

7.
Sci Total Environ ; 753: 142108, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207438

RESUMO

The environmental sector has expressed a growing interest in using electrocoagulation (EC) to treat groundwater/wastewater for drinking/recycling purposes. In the EC process, the electro-dissolution of sacrificial metallic anodes through direct application of current/cell potential dissolves the metals, which precipitate as oxides and hydroxides depending on the electrolyte pH. These particles have large surface areas and can remove pollutants by coagulation. The EC process has been considered an alternative technology due to its versatility, efficiency, low cost, and environmental compatibility. Unfortunately, the lack of knowledge about scaling-up this process has limited its implementation at the industrial scale. The aim of this study is to provide a review of the EC process used for removing arsenic and fluoride from groundwater and wastewater. Approximately 80 published studies were reviewed for this paper. The fundamentals of the EC process and importance of its operating conditions, i.e., electrode material, current density, supporting electrolyte, and pH, are reported in this paper. Additionally, overview of floc characterization and energy consumption are also presented. Finally, this paper also discusses the future perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...