Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 99(2): 642-651, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35976774

RESUMO

A series of pyrroloquinolone photosensitizers bearing different halogen substituents (Cl, Br, I) on the heterocyclic framework was studied. These structures were readily prepared through a multi-step synthetic sequence involving an oxidative protocol as an important step to access the quinolone framework. Spectroscopic characterizations and computational investigations were carried out to study the dyes before and after the oxidative step. Interestingly, the fluorescence emission was significantly reduced upon oxidation. In spite of a low photostability under UV light, the pyrroloquinolone photosensitizers proved effective to produce singlet oxygen. Higher singlet oxygen quantum yields were obtained with photosensitizers bearing halogen atoms with a higher atomic number.

2.
RSC Adv ; 11(51): 31959-31966, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35495525

RESUMO

In this work, we describe the photoisomerization of facial rhenium(i) tricarbonyl complexes bearing P,N-bidentate pyridyl/phosphine ligands with different chelating rings and anions: RePNBr, RePNTfO, and RePNNBr, which are triggered under irradiation at 365 nm in solutions. The apparent photodegradation rate constants (k app) depend on the coordinating ability of the solvent, being lowest in acetonitrile. The k app value increases as the temperature rises, suggesting a reactive IL excited state thermally populated from the MLCT excited state involved. Using the Eyring equation, positive activation enthalpies (ΔH ≠) accompanied by high negative values for the activation entropy (ΔS ≠) were obtained. These results suggest whatever the P,N-ligand or anion, the reaction proceeds through a strongly solvated or a compact transition state, which is compatible with an associative mechanism for the photoisomerization. A 100-fold decrease in the log10 CFU value is observed for E. coli and S. aureus in irradiated solutions of the compounds, which follows the same tendency as their singlet oxygen generation quantum yield: RePNBr > RePNTfO > RePNNBr, while no antibacterial activity is observed in the darkness. This result indicates that the generation of singlet oxygen plays a key role in the antibacterial capacity of these complexes.

3.
J Org Chem ; 85(16): 10603-10616, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32615757

RESUMO

A series of functionalized 6-alkoxy phenalenones was prepared through an unprecedented oxidative dealkylation of readily available phenalene precursors. The starting phenalenes were efficiently synthesized via an aminocatalyzed annulation/O-alkylation strategy starting from simple substrates. The spectroscopic properties of some phenalenones were investigated in different solvents. Introducing an alkoxy substituent at the 6-position onto the phenalenone framework results in a red shift of the absorption. The synthesized phenalenones exhibit low fluorescence quantum yields, and the fluorescence decay was studied in different solvents, highlighting the presence of several lifetimes. The singlet oxygen (1O2) photosensitizing propensity of some phenalenones was investigated, and the results showed the striking importance of the phenalenone molecular structure in generating singlet oxygen with high yields. The ability of phenalenones to generate singlet oxygen was then harnessed in three photooxygenation reactions: anthracene oxidation, oxy-functionalization of citronellol through the Schenck-ene reaction, and photooxidation of a diene.

4.
J Mater Chem B ; 8(1): 88-99, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769463

RESUMO

We synthesized an anthracene derivative with solvatochromic properties to be used as a molecular probe for membrane dynamics and supramolecular organization. A nine carbon atom acyl chain and a dimethylamino substitution were introduced at positions 2 and 6 of the anthracene ring, respectively. This derivative, 2-nonanoyl-6-(dimethylamino)anthracene (termed CAPRYDAA), is a molecular probe designed to mimic the well-known membrane probe LAURDAN's location and response in the lipid membranes. Due to the larger distance between the electron donor and acceptor groups, its absorption and emission bands are red-shifted according to the polarity of the media. The photophysical behavior of CAPRYDAA was measured in homogeneous media, synthetic bilayer and cells, both in a cuvette and in a fluorescence microscope, using one and two-photon excitation. Our results show a comparable physicochemical behavior of CAPRYDAA with LAURDAN, but with the advantage of using visible light (488 nm) as an excitation source. CAPRYDAA was also excitable by two-photon laser sources, making it easy to combine CAPRYDAA with either blue or red emission probes. In GUVs or cells, CAPRYDAA can discriminate the lipid phases and liquid-liquid phase heterogeneity. This new membrane probe shows the bathochromic properties of the PRODAN-based probes designed by Weber, overcoming the need for UV or two-photon excitation and facilitating the studies on the membrane properties using regular confocal microscopes.


Assuntos
2-Naftilamina/análogos & derivados , Antracenos/química , Membrana Celular/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Animais , Membrana Celular/ultraestrutura , Lipídeos de Membrana/análise , Camundongos , Células NIH 3T3
5.
Photochem Photobiol ; 94(5): 845-852, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29446838

RESUMO

The reaction of 2,5-dibromopyrazine with N-Lithium pyrazolate in a 1:2 ratio leads to a mixture of 2-bromo-5-(1H-pyrazol-1-yl)pyrazine (I) and 2,5-di(1H-pyrazol-1-yl)pyrazine (II). The structures of I and II are highly planar. Two absorption bands can be observed for the compounds in the UV-Vis region, having ε in the order of 104  m-1  cm-1 . TD-DFT computed results support the nature of the lower energy absorptions as πpyrazine →π*pyrazine transitions, including an additional intraligand charge transfer transition for I (πpyrazol →π*pyrazine ). Upon excitation at 280 or 320 nm, the emission of both compounds is almost not affected by solvent polarity or oxygen presence, showing two bands for I and one for II in the 350-450 nm region. Emission of II follows a mono-exponential decay, while I decays following a bi-exponential law, hypothesized from πpyrazine →π*pyrazine and πpyrazol →π*pyrazine transitions. Photodegradation of I and II follows a first-order kinetic with constants of 1.18 × 10-2  min-1 and 0.13 × 10-2  min-1 , respectively. Results suggest that photodegradation of I starts with the loose of bromide followed by intermolecular pyrazolyl subtraction and ring opening. This path is not available for II, which is reflected in its enhanced photostability.

6.
Colloids Surf B Biointerfaces ; 161: 375-385, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102849

RESUMO

The study of surfactant and bio membranes interaction is particularly complex due to the diversity in lipid composition and the presence of proteins in natural membranes. Even more difficult is the study of this interaction in vivo since cellular damage may complicate the interpretation of the results, therefore for most of the studies in this field either artificial or model systems are used. One of the model system most used to study biomembranes are erythrocytes due to their relatively simple structure (they lack nuclei and organelles having only the plasma membrane), their convenient experimental manipulation and availability. In this context, we used rabbit erythrocytes as a model membrane and Laurdan (6-lauroyl-2-dimethylaminonaphthalene) as the fluorescent probe to study changes promoted in the membrane by the interaction with the sucrose monoester of myristic acid, ß-d-fructofuranosyl-6-O-myristoyl-α-d-glucopyranoside (MMS). Surfactant and erythrocytes interaction was studied by measuring hemoglobin release and the changes in water content in the membrane sensed by Laurdan. Using two-photon excitation, three types of measurements were performed: Generalized Polarization (analyzed as average GP values), Fluorescence Lifetime Imaging, FLIM (analyzed using phasor plots) and Spectral imaging (analyzed using spectral phasor). Our data indicate that at sublytical concentration of surfactant (20µM MMS), there is a decrease of about 35% in erythrocytes size, without changes in Laurdan lifetime or emission spectra. We also demonstrate that as hemolysis progress, Laurdan lifetime increased due to the decrease in hemoglobin (strong quencher of Laurdan emission) content inside the erythrocytes. Under these conditions, Laurdan spectral phasor analyses can extract the information on the water content in the membrane in the presence of hemoglobin. Our results indicate an increase in membrane fluidity in presence of MMS.


Assuntos
2-Naftilamina/análogos & derivados , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Lauratos/metabolismo , Ácido Mirístico/metabolismo , Sacarose/metabolismo , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Animais , Membrana Eritrocítica/química , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Hemoglobinas/metabolismo , Hemólise , Lauratos/química , Fluidez de Membrana/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Coelhos , Solubilidade , Água/metabolismo
7.
Colloids Surf B Biointerfaces ; 158: 539-546, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28743089

RESUMO

The specificity of carbohydrate-protein interaction is a key factor in many biological processes and it is the foundation of technologies using glycoliposomes in drug delivery. The incorporation of glycolipids in vesicles is expected to increase their specificity toward particular targets such as lectins; however, the degree of exposure of the carbohydrate moiety at the liposome surface is a crucial parameter to be considered in the interaction. Herein we report the synthesis of mannose derivatives with one or two hydrophobic chains of different length, designed with the purpose of modifying the degree of exposure of the mannose when they were incorporated into liposomes. The interaction of glycovesicles with Con A was studied using: (i) agglutination assays; measured by dynamic laser light scattering (DLS); (ii) time resolved fluorescence methods and (iii) surface plasmon resonance (SPR) kinetic measurements. DLS data showed that an increase in hydrophobic chain length promotes a decrease of liposomes hydrodynamic radius. A longer hydrocarbon chain favors a deeper insertion into the bilayer and mannose moiety results less exposed at the surface to interact with lectin. Fluorescence experiments showed changes in the structure of glycovesicles due to the interaction with the protein. From SPR measurements the kinetic and equilibrium constants associated to the interaction of ConA with the different glycolipid synthetized were determined. The combination of SPR and fluorescence techniques allowed to study the interaction of Con A with mannosyl glycovesicles at three levels: at the surface, at the interface and deeper into the bilayer.


Assuntos
Concanavalina A/química , Lipossomos/química , Aglutinação , Anisotropia , Cinética , Manose/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...