Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498692

RESUMO

The bell pepper is a vegetable with high antioxidant content, and its consumption is important because it can reduce the risk of certain diseases in humans. Plants can be affected by different types of stress, whether biotic or abiotic. Among the abiotic factors, there is saline stress that affects the metabolism and physiology of plants, which causes damage, decreasing productivity and quality of fruits. The objective of this work was to evaluate the application of selenium, silicon and copper nanoparticles and saline stress on the bioactive compounds of bell pepper fruits. The bell pepper plants were exposed to saline stress (25 mM NaCl and 50 mM) in the nutrient solution throughout the crop cycle. The nanoparticles were applied drenching solution of these to substrate (Se NPs 10 and 50 mg L-1, Si NPs 200 and 1000 mg L-1, Cu NPs 100 and 500 mg L-1). The results show that saline stress reduces chlorophylls, lycopene, and ß-carotene in leaves; but increased the activity of some enzymes (e.g., glutathione peroxidase and phenylalanine ammonia lyase, and glutathione). In fruits, saline stress decreased flavonoids and glutathione. The nanoparticles increased chlorophylls, lycopene and glutathione peroxidase activity in the leaves; and ascorbate peroxidase, glutathione peroxidase, catalase and phenylalanine ammonia lyase activity, and also phenols, flavonoids, glutathione, ß-carotene, yellow carotenoids in fruits. The application of nanoparticles to bell pepper plants under saline stress is efficient to increase the content of bioactive compounds in fruits.

2.
Int J Mol Sci ; 20(8)2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31010052

RESUMO

Early blight is a disease that greatly affects Solanaceae, mainly damaging tomato plants, and causing significant economic losses. Although there are methods of biological control, these are very expensive and often their mode of action is slow. Due to this, there is a need to use new techniques that allow a more efficient control of pathogens. Nanotechnology is a new alternative to solve these problems, allowing the creation of new tools for the treatment of diseases in plants, as well as the control of pathogens. The aim of the present investigation was to evaluate the foliar application of selenium and copper in the form of nanoparticles in a tomato crop infested by Alternaria solani. The severity of Alternaria solani, agronomic variables of the tomato crop, and the changes in the enzymatic and non-enzymatic antioxidant compounds were evaluated. The joint application of Se and Cu nanoparticles decreases the severity of this pathogen in tomato plants. Moreover, high doses generated an induction of the activity of the enzymes superoxide dismutase, ascorbate peroxidase, glutathione peroxidase (GPX) and phenylalanine ammonia lyase in the leaves, and the enzyme GPX in the fruit. Regarding non-enzymatic compounds in the leaves, chlorophyll a, b, and totals were increased, whereas vitamin C, glutathione, phenols, and flavonoids were increased in fruits. The application of nanoparticles generated beneficial effects by increasing the enzymatic and non-enzymatic compounds and decreasing the severity of Alternaria solani in tomato plants.


Assuntos
Alternaria/fisiologia , Cobre/farmacologia , Nanopartículas/química , Selênio/farmacologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Fenilalanina Amônia-Liase/metabolismo , Pigmentos Biológicos/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
3.
Int J Mol Sci ; 20(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621162

RESUMO

Biostimulants are materials that when applied in small amounts are capable of promoting plant growth. Nanoparticles (NPs) and nanomaterials (NMs) can be considered as biostimulants since, in specific ranges of concentration, generally in small levels, they increase plant growth. Pristine NPs and NMs have a high density of surface charges capable of unspecific interactions with the surface charges of the cell walls and membranes of plant cells. In the same way, functionalized NPs and NMs, and the NPs and NMs with a corona formed after the exposition to natural fluids such as water, soil solution, or the interior of organisms, present a high density of surface charges that interact with specific charged groups in cell surfaces. The magnitude of the interaction will depend on the materials adhered to the corona, but high-density charges located in a small volume cause an intense interaction capable of disturbing the density of surface charges of cell walls and membranes. The electrostatic disturbance can have an impact on the electrical potentials of the outer and inner surfaces, as well as on the transmembrane electrical potential, modifying the activity of the integral proteins of the membranes. The extension of the cellular response can range from biostimulation to cell death and will depend on the concentration, size, and the characteristics of the corona.


Assuntos
Nanopartículas , Nanoestruturas , Plantas/metabolismo , Equilíbrio Ácido-Base , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Concentração Osmolar , Oxirredução , Coroa de Proteína/metabolismo , Eletricidade Estática , Titânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...