Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 22(6): 4771-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583262

RESUMO

Ozone (O3) is the most abundant tropospheric oxidant as well as an important component of photochemical pollution. Once inside the plant, ozone can produce reactive oxygen species that change the antioxidative pool and the carbohydrate metabolism. The current study aimed to analyze whether the contents and the composition of the fructan, the ascorbate peroxidase activity, and the H2O2 accumulation were changed in Lolium multiflorum ssp. italicum cv. Lema plants as response to short-term exposure to ozone and/or to different meteorological conditions, in two contrasting seasons (winter and summer). Results showed that higher solar radiation tends to decrease fructose content and, along with temperature, increases the ascorbate peroxidase (APX) activity. Such activity and levels of fructans practically did not vary during the time the experiment was being done, but APX daylight variation was modified by the ozone. Thus, the higher levels of this pollutant decreased the APX activity and increased fructose content, as well as changed the size of the fructan chains. Hydrogen peroxide (H2O2) accumulation was higher in plants that were fumigated with ozone when compared to the control, and it decreased throughout the day. As a conclusion, fructan contents increased when the APX activity decreased. It suggested that fructans could also help the defense system when there is a reduction on the APX activity in the plant.


Assuntos
Ascorbato Peroxidases/metabolismo , Frutanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Lolium/metabolismo , Ozônio/toxicidade , Ascorbato Peroxidases/química , Metabolismo dos Carboidratos , Peróxido de Hidrogênio/química , Lolium/enzimologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Tempo (Meteorologia)
2.
Braz J Biol ; 70(2): 395-404, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20549068

RESUMO

Echinolaena inflexa (Poir.) Chase is an abundant C3 grass species with high biomass production in the Brazilian savanna (cerrado); Melinis minutiflora Beauv. is an African C4 forage grass widespread in cerrado and probably displacing some native herbaceous species. In the present work, we analysed seasonally the content and composition of soluble carbohydrates, the starch amounts and the above-ground biomass (phytomass) of E. inflexa and M. minutiflora plants harvested in two transects at 5 and 130 m from the border in a restrict area of cerrado at the Biological Reserve and Experimental Station of Mogi-Guaçu (SP, Brazil). Results showed that water soluble carbohydrates and starch amounts from the shoots of both species varied according to the time of the year, whilst in the underground organs, variations were observed mainly in relation to the transects. Marked differences in the pattern of the above-ground biomass production between these two grasses relative to their location in the Reserve were also observed, with two peaks of the invasive species (July and January) at the Reserve border. The differences in carbohydrate accumulation, partitioning and composition of individual sugars concerning time of the year and location in the Reserve were more related to the annual growth cycle of both grasses and possibly to specific physiological responses of M. minutiflora to disturbed environments in the Reserve border.


Assuntos
Biomassa , Carboidratos/análise , Poaceae/química , Estações do Ano , Amido/análise , Poaceae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...