Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 279(20): 3889-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22897443

RESUMO

Deoxyribonucleotides are the building blocks of DNA and can be synthesized via de novo and salvage pathways. Deoxyribonucleoside kinases (EC 2.7.1.145) salvage deoxyribonucleosides by transfer of a phosphate group to the 5' of a deoxyribonucleoside. This salvage pathway is well characterized in mammals, but in contrast, little is known about how plants salvage deoxyribonucleosides. We show that during salvage, deoxyribonucleosides can be phosphorylated by extracts of Arabidopsis thaliana into corresponding monophosphate compounds with an unexpected preference for purines over pyrimidines. Deoxyribonucleoside kinase activities were present in all tissues during all growth stages. In the A. thaliana genome, we identified two types of genes that could encode enzymes which are involved in the salvage of deoxyribonucleosides. Thymidine kinase activity was encoded by two thymidine kinase 1 (EC 2.7.1.21)-like genes (AtTK1a and AtTK1b). Deoxyadenosine, deoxyguanosine and deoxycytidine kinase activities were encoded by a single AtdNK gene. T-DNA insertion lines of AtTK1a and AtTK1b mutant genes had normal growth, although AtTK1a AtTK1b double mutants died at an early stage, which indicates that AtTK1a and AtTK1b catalyze redundant reactions. The results obtained in the present study suggest a crucial role for the salvage of thymidine during early plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Desoxirribonucleosídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Timidina Quinase/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocatálise , Células Cultivadas , DNA Bacteriano/genética , Desoxiadenosinas/metabolismo , Desoxicitidina/metabolismo , Desoxiguanosina/metabolismo , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Família Multigênica/genética , Mutagênese Insercional , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/classificação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Timidina/metabolismo , Timidina Quinase/classificação , Timidina Quinase/genética
2.
J Antimicrob Chemother ; 60(3): 510-20, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17615154

RESUMO

OBJECTIVES: To investigate the bactericidal activity of antiviral and anticancer nucleoside analogues against a variety of pathogenic bacteria and characterize the activating enzymes, deoxyribonucleoside kinases (dNKs). METHODS: Several FDA-approved nucleoside analogue drugs were screened for their potential bactericidal activity against several clinical bacterial isolates and type strains. We identified and subcloned the genes coding for putative deoxyribonucleoside kinases in Escherichia coli, Pasteurella multocida, Salmonella enterica, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes. These genes were tested for their ability to increase the susceptibility of a dNK-deficient E. coli strain to various analogues. We overexpressed, purified and characterized the substrate specificity and kinetic properties of the recombinant enzymes from S. enterica and B. cereus. RESULTS: The tested Gram-negative bacteria were susceptible to 3'-azido-3'-deoxythymidine (AZT) in the concentration range 0.032-31.6 microM except for a single E. coli isolate and two Pseudomonas aeruginosa isolates which were resistant to the tested AZT concentrations. Purified recombinant S. enterica thymidine kinase phosphorylated AZT efficiently with a Km of 73.3 microM and k(cat)/Km of 6.6 x 10(4) s(-1) M(-1) and is the activator of this drug in vivo. 2',2'-Difluoro-2'-deoxycytidine (gemcitabine) was a potent antibiotic against Gram-positive bacteria in the concentration range between 0.001 and 1.0 microM. The B. cereus deoxyadenosine kinase had a Km for gemcitabine of 33.5 microM and k(cat)/Km of 5.1 x 10(3) s(-1) M(-1) and activates gemcitabine in vivo. S. enterica and B. cereus are now amongst the first bacteria with a completely characterized set of dNK enzymes. CONCLUSIONS: Bacterial dNKs efficiently activate nucleoside analogues in a species-specific manner. Therefore, nucleoside analogues have a potential to be employed as antibiotics in the fight against emerging multiresistant bacteria.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Biotransformação/efeitos dos fármacos , Clonagem Molecular , DNA Bacteriano/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Testes de Sensibilidade Microbiana , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Timidina Quinase/metabolismo , Zidovudina/farmacologia , Gencitabina
3.
Antimicrob Agents Chemother ; 51(8): 2726-32, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17526755

RESUMO

Common bacterial pathogens are becoming progressively more resistant to traditional antibiotics, representing a major public-health crisis. Therefore, there is a need for a variety of antibiotics with alternative modes of action. In our study, several nucleoside analogs were tested against pathogenic staphylococci and streptococci. We show that pyrimidine-based nucleoside analogs, like 3'-azido-3'-deoxythymidine (AZT) and 2',2'-difluoro-2'deoxycytidine (gemcitabine), are specifically activated by the endogenous bacterial deoxyribonucleoside kinases, leading to cell death. Deoxyribonucleoside kinase-deficient Escherichia coli strains become highly susceptible to nucleoside analogs when they express recombinant kinases from Staphylococcus aureus or Streptococcus pyogenes. We further demonstrate that recombinant S. aureus deoxyadenosine kinase efficiently phosphorylates the anticancer drug gemcitabine in vitro and is therefore the key enzyme in the activation pathway. When adult mice were infected intraperitoneally with a fatal dose of S. pyogenes strain AP1 and afterwards received gemcitabine, they failed to develop a systemic infection. Nucleoside analogs may therefore represent a promising alternative for combating pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Desoxicitidina/análogos & derivados , Nucleosídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Nucleosídeos/metabolismo , Nucleosídeos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/patogenicidade , Gencitabina
4.
FEBS J ; 274(3): 727-37, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17288553

RESUMO

Thymidine kinase (TK) is the key enzyme in salvaging thymidine to produce thymidine monophosphate. Owing to its ability to phosphorylate nucleoside analogue prodrugs, TK has gained attention as a rate-limiting drug activator. We describe the structures of two bacterial TKs, one from the pathogen Bacillus anthracis in complex with the substrate dT, and the second from the food-poison-associated Bacillus cereus in complex with the feedback inhibitor dTTP. Interestingly, in contrast with previous structures of TK in complex with dTTP, in this study dTTP occupies the phosphate donor site and not the phosphate acceptor site. This results in several conformational changes compared with TK structures described previously. One of the differences is the way tetramers are formed. Unlike B. anthracis TK, B. cereus TK shows a loose tetramer. Moreover, the lasso-domain is in open conformation in B. cereus TK without any substrate in the active site, whereas in B. anthracis TK the loop conformation is closed and thymidine occupies the active site. Another conformational difference lies within a region of 20 residues that we refer to as phosphate-binding beta-hairpin. The phosphate-binding beta-hairpin seems to be a flexible region of the enzyme which becomes ordered upon formation of hydrogen bonds to the alpha-phosphate of the phosphate donor, dTTP. In addition to descriptions of the different conformations that TK may adopt during the course of reaction, the oligomeric state of the enzyme is investigated.


Assuntos
Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Timidina Quinase/química , Sequência de Aminoácidos , Bacillus anthracis/genética , Bacillus cereus/genética , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Timidina Quinase/genética , Timidina Quinase/metabolismo
5.
Trends Biochem Sci ; 30(5): 225-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15896737

RESUMO

Mammals have four deoxyribonucleoside kinases, the cytoplasmic (TK1) and mitochondrial (TK2) thymidine kinases, and the deoxycytidine (dCK) and deoxyguanosine (dGK) kinases, which salvage the precursors for nucleic acids synthesis. In addition to the native deoxyribonucleoside substrates, the kinases can phosphorylate and thereby activate a variety of anti-cancer and antiviral prodrugs. Recently, the crystal structure of human TK1 has been solved and has revealed that enzymes with fundamentally different origins and folds catalyze similar, crucial cellular reactions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Humanos , Modelos Moleculares , Família Multigênica , Precursores de Ácido Nucleico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/classificação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
6.
FEBS Lett ; 560(1-3): 3-6, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14987989

RESUMO

Deoxyribonucleoside kinases, which catalyse the phosphorylation of deoxyribonucleosides, are present in several copies in most multicellular organisms and therefore represent an excellent model to study gene duplication and specialisation of the duplicated copies through partitioning of substrate specificity. Recent studies suggest that in the animal lineage one of the progenitor kinases, the so-called dCK/dGK/TK2-like gene, was duplicated prior to separation of the insect and mammalian lineages. Thereafter, insects lost all but one kinase, dNK (EC 2.7.1.145), which subsequently, through remodelling of a limited number of amino acid residues, gained a broad substrate specificity.


Assuntos
Evolução Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA/química , Dados de Sequência Molecular , Precursores de Ácido Nucleico/química , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Filogenia , Mutação Puntual , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Nucleic Acids Res ; 31(6): 1683-92, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12626710

RESUMO

Slime mold, plant and insect dihydropyrimidine amidohydrolases (DHPases, EC 3.5.2.2), which catalyze the second step of pyrimidine and several anti-cancer drug degradations, were cloned and shown to functionally replace a defective DHPase enzyme in the yeast Saccharomyces kluyveri. The yeast and slime mold DHPases were over-expressed, shown to contain two zinc ions, characterized for their properties and compared to those of the calf liver enzyme. In general, the kinetic parameters varied widely among the enzymes, the mammalian DHPase having the highest catalytic efficiency. The ring opening was catalyzed most efficiently at pH 8.0 and competitively inhibited by the reaction product, N-carbamyl-beta-alanine. At lower pH values DHPases catalyzed the reverse reaction, the closing of the ring. Apparently, eukaryote DHPases are enzymatically as well as phylogenetically related to the de novo biosynthetic dihydroorotase (DHOase) enzymes. Modeling studies showed that the position of the catalytically critical amino acid residues of bacterial DHOases and eukaryote DHPases overlap. Therefore, only a few modifications might have been necessary during evolution to convert the unspecialized enzyme into anabolic and catabolic ones.


Assuntos
Amidoidrolases/genética , Di-Hidro-Orotase/genética , Evolução Molecular , Amidoidrolases/metabolismo , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Dictyostelium/enzimologia , Dictyostelium/genética , Di-Hidro-Orotase/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Escherichia coli/genética , Cinética , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces/enzimologia , Saccharomyces/genética , Especificidade por Substrato
8.
EMBO J ; 21(7): 1873-80, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11927571

RESUMO

In mammals, the four native deoxyribonucleosides are phosphorylated to the corresponding monophosphates by four deoxyribonucleoside kinases, which have specialized substrate specificities. These four enzymes are likely to originate from a common progenitor kinase. Insects appear to have only one multisubstrate deoxyribonucleoside kinase (dNK, EC 2.7.1.145), which prefers pyrimidine nucleosides, but can also phosphorylate purine substrates. When the structures of the human deoxyguanosine kinase (dGK, EC 2.7.1.113) and the dNK from Drosophila melanogaster were compared, a limited number of amino acid residues were identified and proposed to be responsible for the substrate specificity. Three of these key residues in Drosophila dNK were then mutagenized and the mutant enzymes were characterized regarding their ability to phosphorylate native deoxyribonucleosides and nucleoside analogs. The mutations converted the dNK substrate specificity from predominantly pyrimidine specific into purine specific. A similar scenario could have been followed during the evolution of kinases. Upon gene duplication of the progenitor kinase, only a limited number of single amino acid changes has taken place in each copy and resulted in substrate-specialized enzymes.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Desoxirribonucleosídeos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...