Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 230: 104930, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32470442

RESUMO

Understanding protein aggregation is essential to unveil molecular mechanisms associated with neurodegenerative diseases such as Alzheimer's, Huntington's and spongiform encephalopathy, particularly to determine the role of interaction with cell membranes. In this study, we employ Langmuir monolayers as cell membrane models to mimic interaction with the peptide KTNMHKHMAGAAAAGAVVGGLG-OH, a fragment from the human prion protein including residues 106-127, believed to be involved in protein aggregation. Using in situ polarization-modulated infrared reflection adsorption spectroscopy (PM-IRRAS) for Langmuir monolayers and FTIR for solid films, we found that PrP106-127 adopts mainly ß-sheets, random coils and ß-turns in Langmuir monolayers and in Langmuir-Blodgett (LB) and cast films. This also applies to monolayers and solid films made with PrP106-127 and a brain total lipid extract (BTLE). In contrast, some α-helices are observed in the secondary structure of PrP106-127 in monolayers, and especially in solid films, of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). In summary, in a model representing brain cells (BTLE), the secondary structure of PrP106-127 is typical of fiber aggregates, while aggregation is unlikely if PrP106-127 interacts with a membrane model (DOPC) characteristic of mammalian cells.


Assuntos
Encéfalo/metabolismo , Lipídeos/química , Fragmentos de Peptídeos/química , Proteínas Priônicas/química , Sequência de Aminoácidos , Membrana Celular/química , Conformação Proteica em Folha beta
2.
Langmuir ; 33(49): 14167-14174, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29151353

RESUMO

The effects induced by antibiotics on the bacterial membrane may be correlated with their bactericidal activity, and such molecular-level interactions can be probed with Langmuir monolayers representing the cell membrane. In this study, we investigated the interaction between [Ru(mcbtz)2(PPh3)2] (RuBTZ, mcbtz = 2-mercaptobenzothiazoline) and [Ru(mctz)2(PPh3)2] (RuCTZ, mctz = 2-mercaptothiazoline) with Langmuir monolayers of a lipid extract of Escherichia coli, an extract of lipopolysaccharides (LPSs), and a zwitterionic phospholipid, dioleoylphosphatidyl choline (DOPC). RuBTZ and RuCTZ had little effects on DOPC, which is consistent with their negligible toxicity toward mammalian cells that may be approximated by a zwitterionic monolayer. Also little were their effects on LPSs. In contrast, RuBTZ and RuCTZ induced expansion in the surface pressure isotherms and decreased the compressional modulus of the E. coli lipid extract. While the more hydrophobic RuBTZ seemed to affect the hydrophobic tails of the E. coli extract monolayer to a larger extent, according to polarization modulation infrared reflection absorption spectroscopy results, evidence of a stronger RuBTZ interaction could not be confirmed unequivocally. Therefore, the interaction with the E. coli cell membrane cannot be directly correlated with the observed higher bactericidal activity of RuBTZ, in comparison to that of RuCTZ. This appears to be a case in which Langmuir monolayer studies do not suffice to determine the mechanisms responsible for the bactericidal activity.

3.
J Phys Chem B ; 118(36): 10653-61, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25133573

RESUMO

One of the major challenges in drug design is to identify compounds with potential toxicity toward target cells, preferably with molecular-level understanding of their mode of action. In this study, the antitumor property of a ruthenium complex, mer-[RuCl3(dppb)(VPy)] (dppb = 1,4-bis(diphenylphosphine)butane and VPy = 4-vinylpyridine) (RuVPy), was analyzed. Results showed that this compound led to a mortality rate of 50% of HEp-2 cell with 120 ± 10 µmol L(-1), indicating its high toxicity. Then, to prove if its mode of action is associated with its interaction with cell membranes, Langmuir monolayers were used as a membrane model. RuVPy had a strong effect on the surface pressure isotherms, especially on the elastic properties of both the zwitterionic dipalmitoylphosphatidylcholine (DPPC) and the negatively charged dipalmitoylphosphatidylglycerol (DPPG) phospholipids. These data were confirmed by polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). In addition, interactions between the positive group from RuVPy and the phosphate group from the phospholipids were corroborated by density functional theory (DFT) calculations, allowing the determination of the Ru complex orientation at the air-water interface. Although possible contributions from receptors or other cell components cannot be discarded, the results reported here represent evidence for significant effects on the cell membranes which are probably associated with the high toxicity of RuVPy.


Assuntos
Membrana Celular/efeitos dos fármacos , Compostos de Rutênio/toxicidade , 1,2-Dipalmitoilfosfatidilcolina/química , Ar , Animais , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Elasticidade , Humanos , Membranas Artificiais , Modelos Biológicos , Modelos Químicos , Fosfatidilgliceróis/química , Pressão , Piridinas/toxicidade , Espectrofotometria Infravermelho , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...