Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Occup Environ Med ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748403

RESUMO

OBJECTIVE: This longitudinal study evaluated renal function and acute kidney injury (AKI) over time in U.S. agricultural workers. METHODS: We followed Florida agricultural workers from January 2020 to August 2022, collecting blood and urine pre- and post-workday during 5 visits. RESULTS: Pre-workday eGFR function in all participants was lower in summers but relatively consistent over time. In participants who worked almost exclusively in fernery operations (piece-rate compensation), we observed a high incidence of post-workday AKI in 2020 (21%) that increased to 43% by the end of the study. In comparison, 11% of nursery workers (hourly compensation) had AKI, and this rate was fairly stable. CONCLUSION: AKI risk over time differs according to the type of agricultural work. Piece rate workers who are incentivized to forgo rest breaks and hydration to earn higher wages demonstrate steadily increasing rates of AKI.

2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279224

RESUMO

Many large-scale studies show that exogenous erythropoietin, erythropoiesis-stimulating agents, lack any renoprotective effects. We investigated the effects of endogenous erythropoietin on renal function in kidney ischemic reperfusion injury (IRI) using the prolyl hydroxylase domain (PHD) inhibitor, Roxadustat (ROX). Four h of hypoxia (7% O2) and 4 h treatment by ROX prior to IRI did not improve renal function. In contrast, 24-72 h pretreatment by ROX significantly improved the decline of renal function caused by IRI. Hypoxia and 4 h ROX increased interstitial cells-derived Epo production by 75- and 6-fold, respectively, before IRI, and worked similarly to exogenous Epo. ROX treatment for 24-72 h increased Epo production during IRI by 9-fold. Immunohistochemistry revealed that 24 h ROX treatment induced Epo production in proximal and distal tubules and worked similarly to endogenous Epo. Our data show that tubular endogenous Epo production induced by 24-72 h ROX treatment results in renoprotection but peritubular exogenous Epo production by interstitial cells induced by hypoxia and 4 h ROX treatment did not. Stimulation of tubular, but not peritubular, Epo production may link to renoprotection.


Assuntos
Eritropoetina , Inibidores de Prolil-Hidrolase , Traumatismo por Reperfusão , Humanos , Eritropoetina/farmacologia , Rim , Epoetina alfa/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Hipóxia
3.
Biomedicines ; 11(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37509484

RESUMO

Hyponatremia (hypo-osmolality) is a disorder of water homeostasis due to abnormal renal diluting capacity. The body limits the degree to which serum sodium concentration falls through a mechanism called "vasopressin escape". Vasopressin escape is a process that prevents the continuous decrease in serum sodium concentration even under conditions of sustained high plasma vasopressin levels. Previous reports suggest that aldosterone may be involved in the vasopressin escape mechanism. The abilities of aldosterone synthase (Cyp11b2) knockout and wild-type mice to escape from vasopressin were compared. Wild-type mice escaped while the aldosterone synthase knockout mice did not. Both the water channel aquaporin 2 (AQP2) and the urea transporter UT-A1 protein abundances were higher in aldosterone synthase knockout than in wild-type mice at the end of the escape period. Vasopressin escape was also blunted in rats given spironolactone, a mineralocorticoid receptor blocker. Next, the role of the phosphatase, calcineurin (protein phosphatase 2B, PP2B), in vasopressin escape was studied since aldosterone activates calcineurin in rat cortical collecting ducts. Tacrolimus, a calcineurin inhibitor, blunted vasopressin escape in rats compared with the control rats, increased UT-A1, AQP2, and pS256-AQP2, and decreased pS261-AQP2 protein abundances. Our results indicate that aldosterone regulates vasopressin escape through calcineurin-mediated protein changes in UT-A1 and AQP2.

4.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298922

RESUMO

Detection of erythropoietin (Epo) was difficult until a method was developed by the World Anti-Doping Agency (WADA). WADA recommended the Western blot technique using isoelectric focusing (IEF)-PAGE to show that natural Epo and injected erythropoiesis-stimulating agents (ESAs) appear in different pH areas. Next, they used sodium N-lauroylsarcosinate (SAR)-PAGE for better differentiation of pegylated proteins, such as epoetin ß pegol. Although WADA has recommended the use of pre-purification of samples, we developed a simple Western blotting method without pre-purification of samples. Instead of pre-purification, we used deglycosylation of samples before SDS-PAGE. The double detection of glycosylated and deglycosylated Epo bands increases the reliability of the detection of Epo protein. All of the endogenous Epo and exogenous ESAs shift to 22 kDa, except for Peg-bound epoetin ß pegol. All endogenous Epo and exogenous ESAs were detected as 22 kDa deglycosylated Epo by liquid chromatography/mass spectrum (LC/MS) analysis. The most important factor for the detection of Epo is the selection of the antibody against Epo. WADA recommended clone AE7A5, and we used sc-9620. Both antibodies are useful for the detection of Epo protein by Western blotting.


Assuntos
Líquidos Corporais , Eritropoetina , Reprodutibilidade dos Testes , Focalização Isoelétrica/métodos , Western Blotting , Anticorpos , Eletroforese em Gel de Poliacrilamida , Detecção do Abuso de Substâncias/métodos , Proteínas Recombinantes
5.
J Occup Environ Med ; 65(8): 685-688, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167934

RESUMO

OBJECTIVE: The aim of this pilot study was to explore if internal jugular vein (IJV) ultrasound studies on agricultural workers in a field-based research setting could assess volume status during a hydration intervention. METHODS: We performed pre- and post-work shift IJV ultrasound images on 30 agricultural workers. The IJV collapsibility index values were <39% (euvolemic) or ≥39% (hypovolemic). RESULTS: Of the water group, 13% (2/15) had an IJV collapsibility index ≥39%, and this increased to 19% (3/16) by the end of the work shifts. The electrolyte group did not have any workers start the work shift with an IJV collapsibility index ≥39%; however, at the postshift assessment, 15% (2/13) were hypovolemic. CONCLUSION: Internal jugular vein ultrasounds may have the potential to be a useful tool to determine volume status in field-based research settings. Further investigation is needed to confirm these findings.


Assuntos
Fazendeiros , Hipovolemia , Humanos , Projetos Piloto , Ultrassonografia , Veias Jugulares/diagnóstico por imagem
6.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047509

RESUMO

We previously showed that the phosphatases PP1/PP2A and PP2B dephosphorylate the water channel, AQP2, suggesting their role in water reabsorption. In this study, we investigated whether protein phosphatase 2A (PP2A) and protein phosphatase 2B (PP2B or calcineurin), which are present in the inner medullary collecting duct (IMCD), are regulators of urea and water permeability. Inhibition of calcineurin by tacrolimus increased both basal and vasopressin-stimulated osmotic water permeability in perfused rat IMCDs. However, tacrolimus did not affect osmotic water permeability in the presence of aldosterone. Inhibition of PP2A by calyculin increased both basal and vasopressin-stimulated osmotic water permeability, and aldosterone reversed the increase by calyculin. Previous studies showed that adrenomedullin (ADM) activates PP2A and decreases osmotic water permeability. Inhibition of PP2A by calyculin prevented the ADM-induced decrease in water reabsorption. ADM reduced the phosphorylation of AQP2 at serine 269 (pSer269 AQP2). Urea is linked to water reabsorption by building up hyperosmolality in the inner medullary interstitium. Calyculin increased urea permeability and phosphorylated UT-A1. Our results indicate that phosphatases regulate water reabsorption. Aldosterone and adrenomedullin decrease urea or osmotic water permeability by acting through calcineurin and PP2A, respectively. PP2A may regulate water reabsorption by dephosphorylating pSer269, AQP2, and UT-A1.


Assuntos
Túbulos Renais Coletores , Proteínas de Membrana Transportadoras , Ratos , Animais , Ratos Sprague-Dawley , Proteínas de Membrana Transportadoras/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Tacrolimo/farmacologia , Água/metabolismo , Adrenomedulina , Aquaporina 2/metabolismo , Calcineurina/metabolismo , Ureia/farmacologia , Ureia/metabolismo , Aldosterona/metabolismo , Vasopressinas/metabolismo , Permeabilidade , Túbulos Renais Coletores/metabolismo
7.
J Occup Environ Med ; 64(5): e357-e359, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35260538

RESUMO

OBJECTIVE: To estimate the impact of hydration interventions on postworkday hydration status and incidence of acute kidney injury (AKI). METHODS: Thirty agricultural workers were first monitored on a workday without any interventions. On the intervention workday, the same workers were randomized to one of two groups: 169 ounces (oz) (5 L) of plain water (n = 16) or 169 oz (5L) of water with electrolytes (n = 14). RESULTS: No participants in the electrolyte group had an estimate glomerular filtration rate (eGFR) at the end of the workday of less than 90 mL/min/1.73 m2 or met the criteria for AKI in comparison to the water group (eGFR < 90: 15%; AKI: 23%) or the control group (eGFR < 90: 28%; AKI: 18%). CONCLUSION: The study showed that drinking water with electrolytes may lower the risk for development of AKI among agricultural workers.


Assuntos
Injúria Renal Aguda , Fazendeiros , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Eletrólitos , Taxa de Filtração Glomerular , Humanos , Projetos Piloto , Fatores de Risco , Água
8.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164384

RESUMO

Anemia is a major complication of chronic renal failure. To treat this anemia, prolylhydroxylase domain enzyme (PHD) inhibitors as well as erythropoiesis-stimulating agents (ESAs) have been used. Although PHD inhibitors rapidly stimulate erythropoietin (Epo) production, the precise sites of Epo production following the administration of these drugs have not been identified. We developed a novel method for the detection of the Epo protein that employs deglycosylation-coupled Western blotting. With protein deglycosylation, tissue Epo contents can be quantified over an extremely wide range. Using this method, we examined the effects of the PHD inhibitor, Roxadustat (ROX), and severe hypoxia on Epo production in various tissues in rats. We observed that ROX increased Epo mRNA expression in both the kidneys and liver. However, Epo protein was detected in the kidneys but not in the liver. Epo protein was also detected in the salivary glands, spleen, epididymis and ovaries. However, both PHD inhibitors (ROX) and severe hypoxia increased the Epo protein abundance only in the kidneys. These data show that, while Epo is produced in many tissues, PHD inhibitors as well as severe hypoxia regulate Epo production only in the kidneys.


Assuntos
Eritropoetina/metabolismo , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Eritropoetina/análise , Eritropoetina/genética , Feminino , Glicina/farmacologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
9.
J Immigr Minor Health ; 24(5): 1129-1136, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34988908

RESUMO

To examine the health status of Hispanic agricultural workers in Florida and Georgia. Health data from agricultural workers in the Farm Worker Family Health Program (June 2019) and research studies in Florida (May 2015 and May 2019) were examined. Data from 728 agricultural workers were collected through sociodemographic questionnaire and clinical data. In the Florida sample, 83% were overweight or obese, 70% elevated blood pressure, 60% met the definition of prediabetes. In Georgia, 64% were overweight or obese and 67% had elevated blood pressure. Weak correlations were observed between BMI and systolic blood pressure (unadjusted r = 0.20), diastolic blood pressure (unadjusted r = 0.19), and glucose (unadjusted r = 0.14). Adjusting for age and gender did not show statistically significant correlation between BMI and systolic and diastolic blood pressure or glucose. While BMI has been shown to be strongly associated with high blood pressure and impaired glucose, we found a weak correlation among agricultural workers. Given the common and high use of pesticides and elevated rates of hypertension, impaired glucose, and adiposity in agricultural workers, the public health impact of this relationship may require and lead to occupational reform that protects the health of agricultural workers. Future studies should assess occupational and environmental factors and lifestyle differences between agricultural workers and the general population to better understand these discrepancies in health status.


Assuntos
Doenças dos Trabalhadores Agrícolas , Hipertensão , Exposição Ocupacional , Fazendeiros , Florida/epidemiologia , Georgia , Glucose , Nível de Saúde , Hispânico ou Latino , Humanos , Hipertensão/epidemiologia , Obesidade/epidemiologia , Sobrepeso
10.
J Immigr Minor Health ; 24(1): 58-64, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34637039

RESUMO

Agricultural workers, designated as "essential" at the start of the COVID-19 pandemic, work in harsh labor conditions, and now have the added challenge of continuing to work during the COVID-19 pandemic. The aim of this study was to assess agricultural workers' COVID-19 related history, employer-based safety measures, individual preventive practices, and COVID-19 vaccination uptake. A questionnaire study was conducted among agricultural workers in Central Florida about COVID-19 during the month of June 2020 and again in July 2021. Among 92 agricultural workers in June 2020, 47% were obese; 11% had had a COVID-19 nasal test; 87% were able to social distance at work and 34% reported employer provided face masks; 15% reported not willing to get the COVID-19 vaccine and 25% were unsure. 40% could self-isolate if they contracted COVID-19. In a follow-up visit in July 2021, 53% of participants reported receiving a COVID-19 vaccine. Agricultural workers are particularly vulnerable to COVID-19 due to existing health risk factors and lack of essential protective resources. Occupational health protections social safety net programs are urgently needed to prevent infections in vulnerable workers, and reduce community spread, and increase COVID-19 vaccination rates.


Assuntos
COVID-19 , Vacinas contra COVID-19 , Fazendeiros , Pessoal de Saúde , Humanos , Pandemias , SARS-CoV-2
11.
Molecules ; 26(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500833

RESUMO

The kidney is a main site of erythropoietin production in the body. We developed a new method for the detection of Epo protein by deglycosylation-coupled Western blotting. Detection of deglycosylated Epo enables the examination of small changes in Epo production. Using this method, we investigated the effects of angiotensin II (ATII) on Epo production in the kidney. ATII stimulated the plasma Epo concentration; Epo, HIF2α, and PHD2 mRNA expression in nephron segments in the renal cortex and outer medulla; and Epo protein expression in the renal cortex. In situ hybridization and immunohistochemistry revealed that ATII stimulates Epo mRNA and protein expression not only in proximal tubules but also in collecting ducts, especially in intercalated cells. These data support the regulation of Epo production in the kidney by the renin-angiotensin-aldosterone system (RAS).


Assuntos
Angiotensina II/farmacologia , Eritropoetina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Animais , Western Blotting , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos
12.
Biol Res Nurs ; 23(4): 676-688, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34018403

RESUMO

Globally, there is increasing recognition that agricultural workers are at risk for chronic kidney disease of unknown etiology (CKDu). Recurrent heat exposure, physical exertion, dehydration, muscle damage, and inflammation are hypothesized to contribute to the development of CKDu, but the relative importance of these processes and the interactions among them remain unclear. Moreover, there is a need to identify biomarkers that could distinguish individuals who are at greatest risk for kidney damage to target preventative interventions for CKDu. In this study, we evaluated dehydration and markers of inflammation, muscle damage, and renal function in agricultural workers at a non-workday baseline assessment. Urine specific gravity and kidney function were measured before and after work shifts on three subsequent days, and heat index, core body temperature, and heart rate were monitored during the work shifts. A combination of direct comparisons and machine learning algorithms revealed that reduced levels of uromodulin and sodium in urine and increased levels of interleukin-6 and C-reactive protein in serum were indicative of dehydration at baseline, and that dehydration, high body mass index, reduced urine uromodulin, and increased serum interleukin-6, C-reactive protein, and lipopolysaccharide-binding protein at baseline were predictive of acute kidney injury on subsequent workdays. Our findings suggest a method for identifying agricultural workers at greatest risk for kidney injury and reveal potential mechanisms responsible for this process, including pathways overlapping in dehydration and kidney injury. These results will guide future studies confirming these mechanisms and introducing interventions to protect kidney health in this vulnerable population.


Assuntos
Injúria Renal Aguda , Fazendeiros , Injúria Renal Aguda/diagnóstico , Biomarcadores , Desidratação , Humanos , Inflamação
13.
JCI Insight ; 6(8)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33724959

RESUMO

Nephrogenic diabetes insipidus (NDI) patients produce large amounts of dilute urine. NDI can be congenital, resulting from mutations in the type-2 vasopressin receptor (V2R), or acquired, resulting from medications such as lithium. There are no effective treatment options for NDI. Activation of PKA is disrupted in both congenital and acquired NDI, resulting in decreased aquaporin-2 phosphorylation and water reabsorption. We show that adenosine monophosphate-activated protein kinase (AMPK) also phosphorylates aquaporin-2. We identified an activator of AMPK, NDI-5033, and we tested its ability to increase urine concentration in animal models of NDI. NDI-5033 increased AMPK phosphorylation by 2.5-fold, confirming activation. It increased urine osmolality in tolvaptan-treated NDI rats by 30%-50% and in V2R-KO mice by 50%. Metformin, another AMPK activator, can cause hypoglycemia, which makes it a risky option for treating NDI patients, especially children. Rats with NDI receiving NDI-5033 showed no hypoglycemia in a calorie-restricted, exercise protocol. Congenital NDI therapy needs to be effective long-term. We administered NDI-5033 for 3 weeks and saw no reduction in efficacy. We conclude that NDI-5033 can improve urine concentration in animals with NDI and holds promise as a potential therapy for patients with congenital NDI due to V2R mutations.


Assuntos
Adenilato Quinase/efeitos dos fármacos , Diabetes Insípido Nefrogênico/metabolismo , Ativadores de Enzimas/farmacologia , Capacidade de Concentração Renal/efeitos dos fármacos , Adenilato Quinase/metabolismo , Animais , Aquaporina 2/metabolismo , Diabetes Insípido Nefrogênico/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Receptores de Vasopressinas/genética
14.
Acta Physiol (Oxf) ; 232(1): e13629, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33590667

RESUMO

AIM: We have reported earlier that a high salt intake triggered an aestivation-like natriuretic-ureotelic body water conservation response that lowered muscle mass and increased blood pressure. Here, we tested the hypothesis that a similar adaptive water conservation response occurs in experimental chronic renal failure. METHODS: In four subsequent experiments in Sprague Dawley rats, we used surgical 5/6 renal mass reduction (5/6 Nx) to induce chronic renal failure. We studied solute and water excretion in 24-hour metabolic cage experiments, chronic blood pressure by radiotelemetry, chronic metabolic adjustment in liver and skeletal muscle by metabolomics and selected enzyme activity measurements, body Na+ , K+ and water by dry ashing, and acute transepidermal water loss in conjunction with skin blood flow and intra-arterial blood pressure. RESULTS: 5/6 Nx rats were polyuric, because their kidneys could not sufficiently concentrate the urine. Physiological adaptation to this renal water loss included mobilization of nitrogen and energy from muscle for organic osmolyte production, elevated norepinephrine and copeptin levels with reduced skin blood flow, which by means of compensation reduced their transepidermal water loss. This complex physiologic-metabolic adjustment across multiple organs allowed the rats to stabilize their body water content despite persisting renal water loss, albeit at the expense of hypertension and catabolic mobilization of muscle protein. CONCLUSION: Physiological adaptation to body water loss, termed aestivation, is an evolutionary conserved survival strategy and an under-studied research area in medical physiology, which besides hypertension and muscle mass loss in chronic renal failure may explain many otherwise unexplainable phenomena in medicine.


Assuntos
Conservação dos Recursos Hídricos , Hipertensão , Falência Renal Crônica , Animais , Pressão Sanguínea , Rim , Masculino , Músculo Esquelético/fisiologia , Ratos , Ratos Sprague-Dawley
15.
Cells ; 9(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255239

RESUMO

Adrenomedullin (ADM) is a vasodilator that causes natriuresis and diuresis. However, the direct effect of ADM on osmotic water permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether ADM and its ADM receptor components (CRLR, RAMP2, and 3) are expressed in rat inner medulla (IM) and whether ADM regulates osmotic water permeability in isolated perfused rat IMCDs. The mRNAs of ADM, CRLR, and RAMP2 and 3 were detected in rat IM. Abundant protein of CRLR and RAMP3 were also seen but RAMP2 protein level was extremely low. Adding ADM (100 nM) to the bath significantly decreased osmotic water permeability. ADM significantly decreased aquaporin-2 (AQP2) phosphorylation at Serine 256 (pS256) and increased it at Serine 261 (pS261). ADM significantly increased cAMP levels in IM. However, inhibition of cAMP by SQ22536 further decreased ADM-attenuated osmotic water permeability. Stimulation of cAMP by roflumilast increased ADM-attenuated osmotic water permeability. Previous studies show that ADM also stimulates phospholipase C (PLC) pathways including protein kinase C (PKC) and cGMP. We tested whether PLC pathways regulate ADM-attenuated osmotic water permeability. Blockade of either PLC by U73122 or PKC by rottlerin significantly augmented the ADM-attenuated osmotic water permeability and promoted pS256-AQP2 but did change pS261-AQP2. Inhibition of cGMP by L-NAME did not change AQP2 phosphorylation. In conclusion, ADM primarily binds to the CRLR-RAMP3 receptor to initiate signaling pathways in the IM. ADM reduced water reabsorption through a PLC-pathway involving PKC. ADM-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. cAMP is not involved in ADM-attenuated osmotic water permeability.


Assuntos
Adrenomedulina/farmacologia , Medula Renal/efeitos dos fármacos , Osmose/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Água/metabolismo , Aminopiridinas/farmacologia , Animais , Aquaporina 2/metabolismo , Benzamidas/farmacologia , Membrana Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Ciclopropanos/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
16.
Heliyon ; 6(11): e05389, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33195841

RESUMO

Doping tests for the illegal use of erythropoiesis-stimulating agents (ESAs) have been developed. We developed a new Western blotting method to detect and distinguish endogenous erythropoietin (Epo, 35-38 kDa) and exogenous ESAs (epoetin α and ß, 38-42 kDa; darbepoetin α, 47-50 kDa; epoetin ß pegol, 93-110 kDa). Epo and ESAs are glycoproteins and deglycosylation using peptide-N-glycosidase F shifted all Epo and ESA bands except epoetin ß pegol to 22 kDa. We cut the bands of Epo and ESAs from SDS-PAGE gels and analyzed them by Liquid Chromatography/Mass Spectrometry (LC/MS). LC/MS detected all endogenous Epo and exogenous ESAs as deglycosylated 22 kDa Epo, indicating that LC/MS analysis could confirm the presence of Epo or ESA, but could not distinguish between endogenous Epo and exogenous ESAs. We propose the following Epo doping tests: 1) detect Epo or ESAs by Western blotting of the glycosylated form; 2) increase the reliability by the band shift following deglycosylation; and 3) complete confirmation of Epo or ESA by LC/MS analysis using cut gels. One of the advantages of our method is that pre-purification of samples for Epo is not required in our Western blotting.

17.
Physiol Rep ; 8(12): e14485, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32592328

RESUMO

The detection of erythropoietin (Epo) protein by Western blotting has required pre-purification of the sample. We developed a new Western blot method to detect plasma and urinary Epo using deglycosylation. Epo in urine and tissue, and erythropoiesis-stimulating agents (ESAs) in urine were directly detected by our Western blotting. Plasma Epo and ESAs were not detected by direct application but were detected by our Western blotting after deglycosylation. The broad bands of Epo and ESAs were shifted to 22 kDa by deglycosylation except for PEG-bound epoetin ß pegol. The 22 kDa band from an anemic patient's urine was confirmed by Liquid Chromatography/Mass Spectrometry (LC/MS) to contain human Epo. Severe hypoxia (7% O2, 4 hr) caused a 400-fold increase in deglycosylated Epo expression in rat kidneys, which is consistent with the increases in both Epo gene expression and plasma Epo concentration. Immunohistochemistry showed Epo expression in nephrons but not in interstitial cells under control conditions, and hypoxia increased Epo expression in interstitial cells but not in tubules. These data show that intrinsic Epo and all ESAs can be detected by Western blot either directly in urine or after deglycosylation in blood, and that the kidney but not the liver is the main site of Epo production in control and severe hypoxia. Our method will make the tests for Epo doping and detection easy.


Assuntos
Eritropoetina/biossíntese , Hipóxia/metabolismo , Rim/metabolismo , Fígado/metabolismo , Anemia/sangue , Anemia/urina , Animais , Western Blotting/métodos , Modelos Animais de Doenças , Eritropoetina/sangue , Eritropoetina/urina , Glicosilação , Humanos , Hipóxia/sangue , Hipóxia/urina , Masculino , Ratos , Ratos Sprague-Dawley
18.
Nat Rev Nephrol ; 16(10): 603-613, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32587403

RESUMO

The American Society of Nephrology, the European Renal Association-European Dialysis and Transplant Association and the International Society of Nephrology Joint Working Group on Ethical Issues in Nephrology have identified ten broad areas of ethical concern as priority challenges that require collaborative action. Here, we describe these challenges - equity in access to kidney failure care, avoiding futile dialysis, reducing dialysis costs, shared decision-making in kidney failure care, living donor risk evaluation and decision-making, priority setting in kidney disease prevention and care, the ethical implications of genetic kidney diseases, responsible advocacy for kidney health and management of conflicts of interest - with the aim of highlighting the need for ethical analysis of specific issues, as well as for the development of tools and training to support clinicians who treat patients with kidney disease in practising ethically and contributing to ethical policy-making.


Assuntos
Nefrologia/ética , Conflito de Interesses , Controle de Custos/ética , Tomada de Decisão Compartilhada , Prioridades em Saúde/ética , Acessibilidade aos Serviços de Saúde/ética , Disparidades em Assistência à Saúde/ética , Humanos , Nefropatias/genética , Transplante de Rim/ética , Futilidade Médica/ética , Tráfico de Órgãos/ética , Defesa do Paciente/ética , Diálise Renal/economia , Diálise Renal/ética , Insuficiência Renal/terapia , Obtenção de Tecidos e Órgãos/ética
19.
FASEB J ; 34(6): 8296-8309, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367640

RESUMO

Uremic cardiomyopathy, characterized by hypertension, cardiac hypertrophy, and fibrosis, is a complication of chronic kidney disease (CKD). Urea transporter (UT) inhibition increases the excretion of water and urea, but the effect on uremic cardiomyopathy has not been studied. We tested UT inhibition by dimethylthiourea (DMTU) in 5/6 nephrectomy mice. This treatment suppressed CKD-induced hypertension and cardiac hypertrophy. In CKD mice, cardiac fibrosis was associated with upregulation of UT and vimentin abundance. Inhibition of UT suppressed vimentin amount. Left ventricular mass index in DMTU-treated CKD was less compared with non-treated CKD mice as measured by echocardiography. Nephrectomy was performed in UT-A1/A3 knockout (UT-KO) to further confirm our finding. UT-A1/A3 deletion attenuates the CKD-induced increase in cardiac fibrosis and hypertension. The amount of α-smooth muscle actin and tgf-ß were significantly less in UT-KO with CKD than WT/CKD mice. To study the possibility that UT inhibition could benefit heart, we measured the mRNA of renin and angiotensin-converting enzyme (ACE), and found both were sharply increased in CKD heart; DMTU treatment and UT-KO significantly abolished these increases. Conclusion: Inhibition of UT reduced hypertension, cardiac fibrosis, and improved heart function. These changes are accompanied by inhibition of renin and ACE.


Assuntos
Cardiomiopatias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Insuficiência Renal Crônica/metabolismo , Ureia/metabolismo , Actinas/metabolismo , Animais , Cardiomegalia/metabolismo , Fibrose/metabolismo , Ventrículos do Coração/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transportadores de Ureia
20.
Cells ; 9(4)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295252

RESUMO

Aldosterone indirectly regulates water reabsorption in the distal tubule by regulating sodium reabsorption. However, the direct effect of aldosterone on vasopressin-regulated water and urea permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether aldosterone regulates osmotic water permeability in isolated perfused rat IMCDs. Adding aldosterone (500 nM) to the bath significantly decreased osmotic water permeability in the presence of vasopressin (50 pM) in both male and female rat IMCDs. Aldosterone significantly decreased aquaporin-2 (AQP2) phosphorylation at S256 but did not change it at S261. Previous studies show that aldosterone can act both genomically and non-genomically. We tested the mechanism by which aldosterone attenuates osmotic water permeability. Blockade of gene transcription with actinomycin D did not reverse aldosterone-attenuated osmotic water permeability. In addition to AQP2, the urea transporter UT-A1 contributes to vasopressin-regulated urine concentrating ability. We tested aldosterone-regulated urea permeability in vasopressin-treated IMCDs. Blockade of gene transcription did not reverse aldosterone-attenuated urea permeability. In conclusion, aldosterone directly regulates water reabsorption through a non-genomic mechanism. Aldosterone-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. There may be a sex difference apparent in the inhibitory effect of aldosterone on water reabsorption in the inner medullary collecting duct. This study is the first to show a direct effect of aldosterone to inhibit vasopressin-stimulated osmotic water permeability and urea permeability in perfused rat IMCDs.


Assuntos
Aldosterona/uso terapêutico , Transporte Biológico/fisiologia , Medula Renal/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Vasopressinas/efeitos adversos , Aldosterona/farmacologia , Animais , Células Cultivadas , Feminino , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...