Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(11): 1590-1599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857834

RESUMO

A growing body of work suggests that the material properties of biomolecular condensates ensuing from liquid-liquid phase separation change with time. How this aging process is controlled and whether the condensates with distinct material properties can have different biological functions is currently unknown. Using Caenorhabditis elegans as a model, we show that MEC-2/stomatin undergoes a rigidity phase transition from fluid-like to solid-like condensates that facilitate transport and mechanotransduction, respectively. This switch is triggered by the interaction between the SH3 domain of UNC-89 (titin/obscurin) and MEC-2. We suggest that this rigidity phase transition has a physiological role in frequency-dependent force transmission in mechanosensitive neurons during body wall touch. Our data demonstrate a function for the liquid and solid phases of MEC-2/stomatin condensates in facilitating transport or mechanotransduction, and a previously unidentified role for titin homologues in neurons.


Assuntos
Proteínas de Caenorhabditis elegans , Tato , Animais , Tato/fisiologia , Proteínas de Caenorhabditis elegans/genética , Mecanorreceptores/fisiologia , Conectina , Mecanotransdução Celular/fisiologia , Caenorhabditis elegans/genética , Neurônios , Proteínas de Membrana/fisiologia
2.
Nat Methods ; 20(5): 761-769, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024651

RESUMO

Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of the Caenorhabditis elegans nociceptive avoidance circuit. To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit. Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.


Assuntos
Cálcio , Fótons , Animais , Neurônios/fisiologia , Transmissão Sináptica , Caenorhabditis elegans/fisiologia
3.
Methods Mol Biol ; 2600: 239-266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587102

RESUMO

The visualization of mechanical stress distribution in specific molecular networks within a living and physiologically active cell or animal remains a formidable challenge in mechanobiology. The advent of fluorescence-resonance energy transfer (FRET)-based molecular tension sensors overcame a significant hurdle that now enables us to address previously technically limited questions. Here, we describe a method that uses genetically encoded FRET tension sensors to visualize the mechanics of cytoskeletal networks in neurons of living animals with sensitized emission FRET and confocal scanning light microscopy. This method uses noninvasive immobilization of living animals to image neuronal ß-spectrin cytoskeleton at the diffraction limit, and leverages multiple imaging controls to verify and underline the quality of the measurements. In combination with a semiautomated machine-vision algorithm to identify and trace individual neurites, our analysis performs simultaneous calculation of FRET efficiencies and visualizes statistical uncertainty on a pixel by pixel basis. Our approach is not limited to genetically encoded spectrin tension sensors, but can also be used for any kind of ratiometric imaging in neuronal cells both in vivo and in vitro.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Optogenética , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Citoesqueleto , Neurônios , Visão Ocular
4.
Sci Adv ; 7(38): eabg4617, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533987

RESUMO

A repetitive gait cycle is an archetypical component within the behavioral repertoire of many animals including humans. It originates from mechanical feedback within proprioceptors to adjust the motor program during locomotion and thus leads to a periodic orbit in a low-dimensional space. Here, we investigate the mechanics, molecules, and neurons responsible for proprioception in Caenorhabditis elegans to gain insight into how mechanosensation shapes the orbital trajectory to a well-defined limit cycle. We used genome editing, force spectroscopy, and multiscale modeling and found that alternating tension and compression with the spectrin network of a single proprioceptor encodes body posture and informs TRP-4/NOMPC and TWK-16/TREK2 homologs of mechanosensitive ion channels during locomotion. In contrast to a widely accepted model of proprioceptive "stretch" reception, we found that proprioceptors activated locally under compressive stresses in-vivo and in-vitro and propose that this property leads to compartmentalized activity within long axons delimited by curvature-dependent mechanical stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...