Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 12(1): 2157339, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36482724

RESUMO

In recent years, an increasing number of emerging and remerging virus outbreaks have occurred and the rapid development of vaccines against these viruses has been crucial. Controlling the replication of premature termination codon (PTC)-containing viruses is a promising approach to generate live but replication-defective viruses that can be used for potent vaccines. Here, we used anticodon-engineered transfer RNAs (ACE-tRNAs) as powerful precision switches to control the replication of PTC-containing viruses. We showed that ACE-tRNAs display higher potency of reading through PTCs than genetic code expansion (GCE) technology. Interestingly, ACE-tRNA has a site preference that may influence its read-through efficacy. We further attempted to use ACE-tRNAs as a novel viral vaccine platform. Using a human immunodeficiency virus type 1 (HIV-1) pseudotyped virus as an RNA virus model, we found that ACE-tRNAs display high potency for read-through viral PTCs and precisely control their production. Pseudorabies virus (PRV), a herpesvirus, was used as a DNA virus model. We found that ACE-tRNAs display high potency for reading through viral PTCs and precisely controlling PTC-containing virus replication. In addition, PTC-engineered PRV completely attenuated and lost virulence in mice in vivo, and immunization with PRV containing a PTC elicited a robust immune response and provided complete protection against wild-type PRV challenge. Overall, replication-controllable PTC-containing viruses based on ACE-tRNAs provide a new strategy to rapidly attenuate virus infection and prime robust immune responses. This technology can be used as a platform for rapidly developing viral vaccines in the future.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Vacinas Virais , Humanos , Camundongos , Animais , Suínos , Vacinas Virais/genética , Herpesvirus Suídeo 1/genética , Vacinação , RNA de Transferência , Anticorpos Antivirais
2.
Viruses ; 14(3)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336979

RESUMO

Despite many efforts and diverse approaches, developing an effective herpesvirus vaccine remains a great challenge. Traditional inactivated and live-attenuated vaccines always raise efficacy or safety concerns. This study used Pseudorabies virus (PRV), a swine herpes virus, as a model. We attempted to develop a live but replication-incompetent PRV by genetic code expansion (GCE) technology. Premature termination codon (PTC) harboring PRV was successfully rescued in the presence of orthogonal system MbpylRS/tRNAPyl pair and unnatural amino acids (UAA). However, UAA incorporating efficacy seemed extremely low in our engineered PRV PTC virus. Furthermore, we failed to establish a stable transgenic cell line containing orthogonal translation machinery for PTC virus replication, and we demonstrated that orthogonal tRNAPyl is a key limiting factor. This study is the first to demonstrate that orthogonal translation system-mediated amber codon suppression strategy could precisely control PRV-PTC engineered virus replication. To our knowledge, this is the first reported PTC herpesvirus generated by GCE technology. Our work provides a proof-of-concept for generating UAAs-controlled PRV-PTC virus, which can be used as a safe and effective vaccine.


Assuntos
Herpesviridae , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Aminoácidos/genética , Animais , Códon sem Sentido , Código Genético , Herpesviridae/genética , Herpesvirus Suídeo 1/genética , RNA de Transferência , Suínos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...