Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 1555, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858655

RESUMO

OBJECTIVES: Acute upper respiratory tract infections (AURTIs) are prevalent in the general population. However, studies on the association of short-term exposure to air pollution with the risk of hospital visits for AURTIs in adults are limited. This study aimed to explore the short-term exposure to air pollutants among Chinese adults living in Ningbo. METHODS: Quasi-Poisson time serious regressions with distributed lag non-linear models (DLNM) were applied to explore the association between ambient air pollution and AURTIs cases. Patients ≥ 18 years who visit three hospitals, being representative for urban, urban-rural junction and rural were included in this retrospective study. RESULTS: In total, 104,441 cases with AURTIs were enrolled in hospital during 2015-2019. The main results showed that particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and nitrogen dioxide (SO2), were positively associated to hospital visits for AURTIs, except for nitrogen dioxide (O3), which was not statistically significant. The largest single-lag effect for PM2.5 at lag 8 days (RR = 1.02, 95%CI: 1.08-1.40), for NO2 at lag 13 days (RR = 1.03, 95%CI: 1.00-1.06) and for SO2 at lag 5 days (RR = 1.27, 95%CI: 1.08-1.48), respectively. In the stratified analysis, females, and young adults (18-60 years) were more vulnerable to PM2.5 and SO2 and the effect was greater in rural areas and urban-rural junction. CONCLUSIONS: Exposure to ambient air pollution was significantly associated with hospital visits for AURTIs. This study provides epidemiological evidence for policymakers to control better air quality and establish an enhanced system of air pollution alerts.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Material Particulado , Infecções Respiratórias , Humanos , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia , Estudos Retrospectivos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise , Material Particulado/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Idoso , Adulto Jovem , Hospitalização/estatística & dados numéricos , Adolescente , Fatores de Tempo , Doença Aguda , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos
2.
Front Cell Infect Microbiol ; 14: 1327477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384306

RESUMO

Background: Tuberculosis (TB), particularly drug-resistant TB (DR-TB), remains a significant public health concern in Ningbo, China. Understanding its molecular epidemiology and spatial distribution is paramount for effective control. Methods: From December 24, 2020, to March 12, 2023, we collected clinical Mycobacterium tuberculosis (MTB) strains in Ningbo, with whole-genome sequencing performed on 130 MTB strains. We analyzed DR-related gene mutations, conducted phylogenetic and phylodynamic analyses, identified recent transmission clusters, and assessed spatial distribution. Results: Among 130 DR-TB cases, 41% were MDR-TB, 36% pre-XDR-TB, 19% RR-TB, and 3% HR-TB. The phylogenetic tree showed that 90% of strains were Lineage 2 (Beijing genotype), while remaining 10% were Lineage 4 (Euro-American genotype). The spatial analysis identified hotspots of DR-TB in Ningbo's northern region, particularly in traditional urban centers. 31 (24%) of the DR-TB cases were grouped into 7 recent transmission clusters with a large outbreak cluster containing 15 pre-XDR-TB patients. Epidemiological analyses suggested a higher risk of recent DR-TB transmission among young adult patients who frequently visited Internet cafes, game rooms, and factories. Conclusion: Our study provides comprehensive insights into the epidemiology and genetics of DR-TB in Ningbo. The presence of genomic clusters highlights recent transmission events, indicating the need for targeted interventions. These findings are vital for informing TB control strategies in Ningbo and similar settings.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Adulto Jovem , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Genótipo , China/epidemiologia , Genômica , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
3.
Front Public Health ; 10: 956171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062095

RESUMO

Setting: Controlling drug-resistant tuberculosis in Ningbo, China. Objective: Whole-genome sequencing (WGS) has not been employed to comprehensively study Mycobacterium tuberculosis isolates, especially rifampicin-resistant tuberculosis, in Ningbo, China. Here, we aim to characterize genes involved in drug resistance in RR-TB and create a prognostic tool for successfully predicting drug resistance in patients with TB. Design: Drug resistance was predicted by WGS in a "TB-Profiler" web service after phenotypic drug susceptibility tests (DSTs) against nine anti-TB drugs among 59 clinical isolates. A comparison of consistency, sensitivity, specificity, and positive and negative predictive values between WGS and DST were carried out for each drug. Results: The sensitivities and specificities for WGS were 95.92 and 90% for isoniazid (INH), 100 and 64.1% for ethambutol (EMB), 97.37 and 100% for streptomycin (SM), 75 and 100% for amikacin (AM), 80 and 96.3%for capreomycin (CAP), 100 and 97.22% for levofloxacin (LFX), 93.33 and 90.91% for prothionamide (PTO), and 70 and 97.96% for para-aminosalicylic acid (PAS). Around 53 (89.83%) and 6 (10.17%) of the isolates belonged to lineage two (East-Asian) and lineage four (Euro-American), respectively. Conclusion: Whole-genome sequencing is a reliable method for predicting resistance to INH, RIF, EMB, SM, AM, CAP, LFX, PTO, and PAS with high consistency, sensitivity, and specificity. There was no transmission that occurred among the patients with RR-TB in Ningbo, China.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Resistência a Medicamentos , Etambutol , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-35564780

RESUMO

The autoregressive integrated moving average with exogenous regressors (ARIMAX) modeling studies of pulmonary tuberculosis (PTB) are still rare. This study aims to explore whether incorporating air pollution and meteorological factors can improve the performance of a time series model in predicting PTB. We collected the monthly incidence of PTB, records of six air pollutants and six meteorological factors in Ningbo of China from January 2015 to December 2019. Then, we constructed the ARIMA, univariate ARIMAX, and multivariate ARIMAX models. The ARIMAX model incorporated ambient factors, while the ARIMA model did not. After prewhitening, the cross-correlation analysis showed that PTB incidence was related to air pollution and meteorological factors with a lag effect. Air pollution and meteorological factors also had a correlation. We found that the multivariate ARIMAX model incorporating both the ozone with 0-month lag and the atmospheric pressure with 11-month lag had the best performance for predicting the incidence of PTB in 2019, with the lowest fitted mean absolute percentage error (MAPE) of 2.9097% and test MAPE of 9.2643%. However, ARIMAX has limited improvement in prediction accuracy compared with the ARIMA model. Our study also suggests the role of protecting the environment and reducing pollutants in controlling PTB and other infectious diseases.


Assuntos
Poluição do Ar , Tuberculose Pulmonar , China/epidemiologia , Humanos , Incidência , Conceitos Meteorológicos , Tuberculose Pulmonar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...