Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38935006

RESUMO

INTRODUCTION: White spot lesions (WSLs) represent a prominent pathology encountered during orthodontic treatment, originating from enamel demineralization induced by the accumulation of bacterial biofilms. The previously developed bioinspired enamel coating form of self-assembling antimicrobial peptide D-GL13K exhibited antimicrobial activity and enhanced acid impermeability, offering a potential solution to prevent demineralization. The primary aim of this investigation is to assess the in vivo anti-demineralization properties and biocompatibility of the D-GL13K coating. METHODS: A rat model was developed to assess the antimicrobial enamel coating during fixed orthodontic treatment. The anti-demineralization efficacy attributed to the D-GL13K coating was evaluated by employing optical coherence tomography, Vickers microhardness testing, and scanning electron microscopy. The biocompatibility of the D-GL13K coating was investigated through histologic observations of vital organs and tissues using hematoxylin and eosin. RESULTS: The D-GL13K coating demonstrated significant anti-demineralization effects, evidenced by reduced demineralization depth analyzed through optical coherence tomography and enhanced Vickers hardness than in the noncoated control group, showcasing the coating's potential to protect teeth from WSLs. Scanning electron microscopy analysis further elucidated the diminished enamel damage observed in the group treated with D-GL13K. Importantly, histologic examination of vital organs and tissues using hematoxylin and eosin staining revealed no overt disparities between the D-GL13K coated group and the noncoated control group. CONCLUSIONS: The D-GL13K enamel coating demonstrated promising anti-demineralization and biocompatibility properties in a rat model, thereby suggesting its potential for averting WSLs after orthodontic interventions. Further research in human clinical settings is needed to evaluate the coating's long-term efficacy.

2.
Chem Commun (Camb) ; 60(45): 5868-5871, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756077

RESUMO

Platelike carbon-encapsulated nickel nanocrystals (Ni@C) were engineered as a high-performance electrocatalyst for the conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). This electrocatalyst demonstrated remarkable electrocatalytic performance in oxidizing HMF at a low potential, achieving 100% HMF conversion, 97.7% FDCA yield, and 97.4% Faraday efficiency (FE).

3.
Int J Biol Macromol ; 267(Pt 1): 131480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599427

RESUMO

Bone regeneration remains a major clinical challenge, especially when infection necessitates prolonged antibiotic treatment. This study presents a membrane composed of self-assembled and interpenetrating GL13K, an antimicrobial peptide (AMP) derived from a salivary protein, in a collagen membrane for antimicrobial activity and enhanced bone regeneration. Commercially available collagen membranes were immersed in GL13K solution, and self-assembly was initiated by raising the solution pH to synthesize the multifunctional membrane called COL-GL. COL-GL was composed of interpenetrating large collagen fibers and short GL13K nanofibrils, which increased hydrophobicity, reduced biodegradation from collagenase, and stiffened the matrix compared to control collagen membranes. Incorporation of GL13K led to antimicrobial and anti-fouling activity against early oral surface colonizer Streptococcus gordonii while not affecting fibroblast cytocompatibility or pre-osteoblast osteogenic differentiation. GL13K in solution also reduced macrophage inflammatory cytokine expression and increased pro-healing cytokine expression. Bone formation in a rat calvarial model was accelerated at eight weeks with COL-GL compared to the gold-standard collagen membrane based on microcomputed tomography and histology. Interpenetration of GL13K within collagen sidesteps challenges with antimicrobial coatings on bone regeneration scaffolds while increasing bone regeneration. This strength makes COL-GL a promising approach to reduce post-surgical infections and aid bone regeneration in dental and orthopedic applications. STATEMENT OF SIGNIFICANCE: The COL-GL membrane, incorporating the antimicrobial peptide GL13K within a collagen membrane, signifies a noteworthy breakthrough in bone regeneration strategies for dental and orthopedic applications. By integrating self-assembled GL13K nanofibers into the membrane, this study successfully addresses the challenges associated with antimicrobial coatings, exhibiting improved antimicrobial and anti-fouling activity while preserving compatibility with fibroblasts and pre-osteoblasts. The accelerated bone formation observed in a rat calvarial model emphasizes the potential of this innovative approach to minimize post-surgical infections and enhance bone regeneration outcomes. As a promising alternative for future therapeutic interventions, this material tackles the clinical challenges of extended antibiotic treatments and antibiotic resistance in bone regeneration scenarios.


Assuntos
Peptídeos Antimicrobianos , Regeneração Óssea , Colágeno , Membranas Artificiais , Nanofibras , Regeneração Óssea/efeitos dos fármacos , Animais , Ratos , Nanofibras/química , Colágeno/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Osteogênese/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Fibroblastos/efeitos dos fármacos
5.
Chem Commun (Camb) ; 60(31): 4214-4217, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38525808

RESUMO

CuO-Ni(OH)2 heterostructure nanosheets were designed for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furanedioic acid (FDCA). The CuO-Ni(OH)2 nanosheets exhibited impressive performance, achieving 100% HMF conversion, 99.8% FDCA yield, and 98.4% faradaic efficiency.

6.
Bioconjug Chem ; 35(1): 1-21, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38118277

RESUMO

The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.


Assuntos
Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Inflamação/tratamento farmacológico , Nanopartículas/química , Liberação Controlada de Fármacos
7.
Colloids Surf B Biointerfaces ; 232: 113604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913704

RESUMO

Preventing bacterial infection and promoting osseointegration are essential for the long-term success of titanium (Ti) implants. In this study, we developed a multifunctional nanocoating on Ti mini-implants to simultaneously address these challenges. The nanocoating consists of self-assembled antimicrobial peptides GL13K and silver nanoparticles, referred to as Ag-GL. Our results showed that the Ag-GL coating did not alter the surface morphology of the mini-implants. Ag-GL coated mini-implants demonstrated a two orders of magnitude reduction in colony-forming unit (CFU) values compared to the noncoated eTi group, resulting in minimal inflammation and no apparent bone destruction in a bacterial infection in vivo model. When evaluating osseointegration properties, micro-CT analysis, histomorphometric analysis, and pull-out tests revealed that the Ag-GL coating significantly enhanced osseointegration and promoted new bone formation in vivo.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Humanos , Osseointegração , Titânio/farmacologia , Titânio/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície , Prata/farmacologia , Prata/química
8.
Chem Commun (Camb) ; 59(54): 8440-8443, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337758

RESUMO

A Mn-doped Ni2P electrocatalyst with a unique microstructure of nanocrystal-decorated amorphous nanosheets was, for the first time, reported for the electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). This electrocatalyst demonstrated superior HMF electrooxidation performance with 100% HMF conversion, 98.0% FDCA yield, and 97.8% Faraday efficiency.

9.
Chemistry ; 29(42): e202300973, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100743

RESUMO

Electrooxidation of 5-hydroxymethylfural (HMF) into 2,5-furandicarboxylicacid (FDCA) has been regarded as a promising sustainable approach to achieve value-added chemicals. However, it is still impeded by the unsatisfactory performance of electrocatalysts. Here, Cu2 P7 -CoP heterostructure nanosheets were reported to enable powerful HMF electrooxidation. The Cu2 P7 -CoP heterostructure nanosheets were fabricated by microwave-assisted deep eutectic solvent (DES) approach, along with subsequent phosphiding. The Cu2 P7 -CoP heterostructure nanosheets enabled a superb 100 % HMF conversion at 1.43 V (vs. RHE) with 98.8 % FDCA yield and 98 % Faradaic efficiency (FE), demonstrating its promising application in HMF electrooxidation. X-ray photoelectron spectroscopy (XPS) analysis, open-circuit potential (OCP) approach and density functional theory (DFT) calculation uncovered that the electron transfer and redistribution between Cu2 P7 and CoP improved the adsorption capacity of HMF and modulated the catalytic performance. This study not only offered a powerful electrocatalyst for HMF electrooxidation, but also provided a conceptually new strategy for the heterostructure catalyst design.

10.
Am J Orthod Dentofacial Orthop ; 163(4): 540-552.e2, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36566089

RESUMO

INTRODUCTION: The objectives of this study were to evaluate the clinical efficacy of SmartTrack aligner in rotational movement of the anterior tooth by 15°-30°, and to analyze the factors influencing anterior tooth rotational movement. METHODS: A total of 212 teeth, including 4 tooth types (maxillary central incisor, maxillary lateral incisor, mandibular central incisor, and mandibular canine) that require anterior tooth rotational movement by 15°-30° were selected from 123 patients, with a mean age of 25.6 years. Rotational movements were calculated from the superimposition of the initial and predicted models (predicted rotational movement) and from the superimposition of the initial and achieved models (achieved rotational movement) using the best-fit alignment tool in NX Imageware. The difference between the predicted and achieved rotational movements (DPARM) was calculated. Univariate analysis, categorical regression analysis, and subgroup analysis were performed on 7 variables: age, gender, tooth type, predicted rotational movement, attachment type, interproximal reduction (IPR), and the total number of active aligners. RESULTS: The mean DPARM when the anterior tooth was rotated 15°-30° was 4.46° (range, -3.52° to 25.28°). Regression analysis showed that the patient's age, IPR, tooth type, and predicted rotational movement affected DPARM (P <0.01). CONCLUSIONS: Factors influencing the DPARM of the anterior tooth include the patient's age, tooth type, the magnitude of the predicted rotational movement, and whether or not IPR was prescribed.


Assuntos
Má Oclusão , Aparelhos Ortodônticos Removíveis , Humanos , Rotação , Resultado do Tratamento , Técnicas de Movimentação Dentária
11.
Biomed Pharmacother ; 155: 113681, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108392

RESUMO

The modern rise in type 2 diabetes mellitus (T2DM) and its correlation to commensal microbiota have elicited global concern about the patterns of microbial action in the host. With the exception of that linked to gut, microbiota were also colonized in pancreas, oral, and lung, contributing to the physiopathology of T2DM. In this study, we aimed to explore the protective effects of Ganoderma atrum polysaccharide (PSG) and White Hyacinth Bean polysaccharide (WHBP) on the intestine, pancreas, oral, and lung microbiota in T2DM rats. Here we showed that, despite capacities of polysaccharides that exerted similar protective effects on hyperglycemia, dyslipidemia, insulin resistance and dysbacteriosis in T2DM rats, PSG and WHBP were able to be characterized by their own "target" bacteria, which could be proposed for activity-fingerprinting of polysaccharide species. Furthermore, we found a mutual bacteria spectrum in the pancreas and lung, and most bacteria could be tracked to oral or gut samples. Notably, the overlapping areas of the microbiota profile between organs (pancreas, lung) and saliva were more than in the gut, suggesting that a saliva sample was also of interest to serve as a "telltale sign" for judging pancreatic injury. Together, these microbiota interactions provided a new potential to harvest alternative samples for disease surveillance. Meanwhile, polysaccharides had anti-T2DM abilities, which could be distinguished by their own characteristic bacteria.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbiota , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Polissacarídeos/farmacologia , Pâncreas , Pulmão
12.
BMC Plant Biol ; 22(1): 30, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027005

RESUMO

Strigolactone is a newly discovered type of plant hormone that has multiple roles in modulating plant responses to abiotic stress. Herein, we aimed to investigate the effects of exogenous GR24 (a synthetic analogue of strigolactone) on plant growth, photosynthetic characteristics, carbohydrate levels, endogenous strigolactone content and antioxidant metabolism in cucumber seedlings under low light stress. The results showed that the application of 10 µM GR24 can increase the photosynthetic efficiency and plant biomass of low light-stressed cucumber seedlings. GR24 increased the accumulation of carbohydrates and the synthesis of sucrose-related enzyme activities, enhanced antioxidant enzyme activities and antioxidant substance contents, and reduced the levels of H2O2 and MDA in cucumber seedlings under low light stress. These results indicate that exogenous GR24 might alleviate low light stress-induced growth inhibition by regulating the assimilation of carbon and antioxidants and endogenous strigolactone contents, thereby enhancing the tolerance of cucumber seedlings to low light stress.


Assuntos
Adaptação Ocular/efeitos dos fármacos , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
13.
Acta Biomater ; 140: 338-349, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896631

RESUMO

Antimicrobial coatings are one of the most promising strategies to prevent bacterial infections in orthopedic and dental implants. Combining antimicrobial agents with different antimicrobial mechanisms might have synergistic effects and be more potent. Others have shown that nanocomposites of silver nanoparticles (AgNPs) decorated with antimicrobial peptides (AMPs) show increased potency as free agents in solution. However, similar nanocomposites have not been explored to coat biomaterials through cooperative weak electrostatic attraction forces between AMP, AgNPs and substrates in need of protection against infection. In this work, we synthesized self-assembled antimicrobial amphiphiles of an AMP, GL13K. Then, we decorated the AMP nanostructures with AgNPs, which were finally used to coat etched Ti (eTi) surfaces. The strong hydrogen bonding between the AMP amphiphiles and the polar eTi yielded a robust and stable coating. When compared to single AgNP or single AMP coatings, our hybrid nanocoatings had notably higher in vitro antimicrobial potency against multiple bacteria strains related to implant infection. The hybrid coating also showed relevant antimicrobial activity in an in vivo subcutaneous infection model in rats. This work advances the application of AgNP/AMP nanocomposites as effective coatings for prevention of implant infections. STATEMENT OF SIGNIFICANCE: High morbidity, mortality and elevated costs are associated with orthopedic and dental implant infections. Conventional antibiotic treatment is ineffective due to barrier-like extracellular polymeric substances in biofilms and the increasing threat from antibiotic resistance. Antimicrobial coatings are one of the most promising strategies, but the performance is usually unsatisfactory, especially when tested in vivo. Here, we present a hybrid nanocoating with different modes of action to prevent implant infections using self-assembled antimicrobial peptide (AMP) amphiphiles decorated with silver nanoparticles (AgNPs). When compared to single AgNP or AMP coatings, our hybrid nanocoatings showed significant increases in antimicrobial potency against multiple implant infection-related bacterial strains in vitro and in an in vivo rat subcutaneous infection model.


Assuntos
Materiais Revestidos Biocompatíveis , Nanopartículas Metálicas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas Metálicas/química , Ratos , Prata/química , Prata/farmacologia
14.
Mol Med ; 27(1): 132, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670484

RESUMO

BACKGROUND: The FOXP3/miR-146a/NF-κB axis was previously reported to modulate the induction and function of CD4+ Treg cells to alleviate oral lichen planus. Also, other signaling pathways including microRNA-155-IFN-γ loop and FOXP3/miR-146a/TRAF6 pathways were reported to be involved in the pathogenesis of oral lichen planus. In this study, we aimed to investigate the molecular mechanism underlying the pathogenesis of EOLP. METHOD: CircRNA microarray was used to observe the expression of candidate circRNAs in CD4+ T-cells collected from different groups. Real-time PCR and Western blot were conducted to observe the changes in the expression of different miRNAs, mRNAs and proteins. Flow cytometry was performed to compare the counts of Treg cells in the HC and EOLP groups, and ELISA was performed to evaluate the changes in the expression of inflammatory cytokines. RESULT: No obvious differences were seen between the HC and EOLP groups in terms of age and gender. Among all candidate circRNAs, the expression of circ_003912 was most dramatically elevated in CD4+ T-cells collected from the EOLP group. The levels of miR-1231, miR-31, miR-647, FOXP3 mRNA and miR-146a were decreased while the expression of TRAF6 mRNA was increased in CD4+ T-cells collected from the EOLP group. The count of Treg cells in the EOLP group was dramatically increased. The levels of inflammatory cytokines including IL-4 IFN-γ, IL-10 and IL-2 were influenced by the presence of circ_003912. In CD4+ T-cells in the EOLP group, the levels of IL-4 and IL-10 were decreased while the levels of IFN-γ and IL-2 were increased. The presence of miR-1231, miR-31 and miR-647 all obviously inhibited the expression of circ_003912, which was validated to sponge the expression of above miRNAs. Also, FOXP3 mRNA was proved to be targeted by miR-1231, miR-31 and miR-647. Transfection of circ_003912 up-regulated the expression of circ_003912, miR-146a and FOXP3 mRNA/protein while down-regulating the expression of miR-1231, miR-31, miR-647, and TRAF6 mRNA/protein. The levels of inflammatory cytokines including IL-4 IFN-γ, IL-10 and IL-2 as well as the speed of cell proliferation were influenced by circ_003912. CONCLUSION: In this study, we investigated the molecular mechanisms underlying the pathogenesis of EOLP which involved the functioning of circ_003912. We first demonstrated that circ_003912 was up-regulated in CD4+ T-cells of the EOLP group. And miRNAs including miR-1231, miR-31 and miR-647 were sponged by circ_003912 and down-regulated in CD4+ T cells of the EOLP group, which subsequently up-regulated the expression of FOXP3 and miR-146a, and resulted in the inhibition of NF-kB.


Assuntos
Fatores de Transcrição Forkhead/genética , Líquen Plano Bucal/genética , MicroRNAs/genética , RNA Circular/genética , Adulto , Linfócitos T CD4-Positivos/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Líquen Plano Bucal/metabolismo , Líquen Plano Bucal/patologia , Masculino , Pessoa de Meia-Idade , Interferência de RNA , RNA Mensageiro/genética , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Células THP-1 , Regulação para Cima
15.
Nanoscale ; 12(40): 20767-20775, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33030163

RESUMO

With the increasing threat from antibiotic-resistant bacteria, surface modification with antimicrobial peptides (AMP) has been promisingly explored for preventing bacterial infections. Little is known about the critical factors that govern AMP-surface interactions to obtain stable and active coatings. Here, we systematically monitored the adsorption of a designer amphipathic AMP, GL13K, on model surfaces. Self-assembly of the GL13K peptides formed supramolecular amphiphiles that highly adsorbed on negatively charged, polar hydroxyapatite-coated sensors. We further tuned surface charge and/or surface polarity with self-assembled monolayers (SAMs) on Au sensors and studied their interactions with adsorbed GL13K. We determined that the surface polarity of the SAM-coated sensors instead of their surface charge was the dominant factor governing AMP/substrate interactions via hydrogen bonding. Our findings will instruct the universal design of efficient self-assembled AMP coatings on biomaterials, biomedical devices and/or natural tissues.


Assuntos
Durapatita , Peptídeos , Adsorção , Antibacterianos , Proteínas Citotóxicas Formadoras de Poros
16.
Colloids Surf B Biointerfaces ; 190: 110938, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32172164

RESUMO

Dental materials are susceptible to dental plaque formation, which increases the risk of biofilm-associated oral diseases. Physical-chemical properties of dental material surfaces can affect salivary pellicle formation and bacteria attachment, but relationships between these properties have been understudied. We aimed to assess the effects of surface properties and adsorbed salivary pellicle on Streptococcus gordonii adhesion to traditional dental materials. Adsorption of salivary pellicle from one donor on gold, stainless steel, alumina and zirconia was monitored with a quartz crystal microbalance with dissipation monitoring (QCM-D). Surfaces were characterized by X-ray photoelectron spectroscopy, atomic force microscopy and water contact angles measurement before and after pellicle adsorption. Visualization and quantification of Live/Dead stained bacteria and scanning electron microscopy were used to study S. gordonii attachment to materials with and without pellicle. The work of adhesion between surfaces and bacteria was also determined. Adsorption kinetics and the final thickness of pellicle formed on the four materials were similar. Pellicle deposition on all materials increased surface hydrophilicity, surface energy and work of adhesion with bacteria. Surfaces with pellicle had significantly more attached bacteria than surfaces without pellicle, but the physical-chemical properties of the dental material did not significantly alter bacteria attachment. Our findings suggested that the critical factor increasing S. gordonii attachment was the salivary pellicle formed on dental materials. This is attributed to increased work of adhesion between bacteria and substrates with pellicle. New dental materials should be designed for controlling bacteria attachment by tuning thickness, composition and structure of the adsorbed salivary pellicle.


Assuntos
Antibacterianos/farmacologia , Materiais Dentários/farmacologia , Película Dentária/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Adsorção , Antibacterianos/química , Físico-Química , Materiais Dentários/química , Película Dentária/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície
17.
Nanoscale ; 11(1): 266-275, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30534763

RESUMO

Recent studies have shown that antimicrobial peptides (AMPs) can self-assemble into supramolecular structures, but this has been overlooked as causative of their antimicrobial activity. Also, the higher antimicrobial potency of d-enantiomers compared to l-enantiomers of AMPs cannot always be attributed to their different resistance to protease degradation. Here, we tested all l- and d-amino acid versions of GL13K, an AMP derived from a human protein, to study structural links between the AMP secondary structure, supramolecular self-assembly dynamics, and antimicrobial activity. pH dependence and the evolution of secondary structures were related to a self-assembly process with differences among these AMPs. The two GL13K enantiomers formed analogous self-assembled twisted nanoribbon structures, but d-GL13K initiated self-assembly faster and had notably higher antimicrobial potency than l-GL13K. A non-antimicrobial scrambled amino acid version of l-GL13K assembled at a much higher pH to form distinctively different self-assembled structures than l-GL13K. Our results support a functional relationship between the AMP self-assembly and their antimicrobial activity.


Assuntos
Aminoácidos/química , Peptídeos Catiônicos Antimicrobianos/química , Oligopeptídeos/química , Peptídeos/química , Estrutura Secundária de Proteína , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares , Conformação Molecular , Estereoisomerismo
18.
Zhongguo Zhong Yao Za Zhi ; 43(16): 3235-3242, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200724

RESUMO

Traditional Chinese medicine(TCM) has been increasingly used in the prevention and treatment of obesity and obesity-related diseases. However, its mechanism of action is not yet clear. In recent years, with the development of high-throughput sequencing technology, scientific researches have found that the disorder of gut microbiota is associated with obesity and other diseases. Furthermore, it has been found that TCM can improve the structure of gut microbiota by increasing probiotics and reducing pathogens, which play an importent role in preventing the development and progression of obesity and other diseases. This article first explores the possible association between intestinal microbiota and obesity. Then, it reviews the traditional Chinese medicine and its role in regulating intestinal microbiota for the prevention and treatment of diseases, including obesity and inflammation, insulin resistance, type 2 diabetes, non-alcoholic fatty liver disease, inflammatory bowel disease and other diseases, in theexpectation of new strategies and research direction for treating obesity and relevant diseases, and providing important guidance for further studies in this field in the future.


Assuntos
Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Obesidade/terapia , Diabetes Mellitus Tipo 2/terapia , Humanos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/terapia
19.
Int J Clin Exp Pathol ; 11(5): 2728-2734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31938389

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) has been found to play a crucial role in carcinogenesis and in evaluating prognosis of multiple neoplasms. PANDAR (promoter of CDKN1A antisense DNA damage activated RNA), a newly discovered cancer-associated RNA is abnormally expressed in a wide variety of tumors. Expression and the functional role of PANDAR in human oral squamous cell carcinoma (OSCC), however, needs to be completely elucidated. METHODS: Quantitative real-time PCR (qRT-PCR) was applied to detect expression levels of lncRNA PANDAR in OSCC tissues and corresponding paracancerous normal tissues in 92 OSCC patients, four OSCC cell lines, and a normal oral keratinocytes cell line. Association between expression of PANDAR and clinicopathological features of OSCC patients was also analyzed. For analysis of overall survival data, Kaplan-Meier curves were constructed. The prognostic value of PANDAR was examined by Cox regression analysis. PANDAR levels were knocked down in OSCC cell line Tca8113 by using PANDAR siRNA. Function of PANDAR on tumor cell proliferation, migration, and invasion was further evaluated by MTT and Transwell assays in vitro. RESULTS: PANDAR was highly expressed in OSCC tissues and cell lines (P < 0.05) and its high expression level was found to be closely associated with advanced TNM stage (P = 0.004) and positive distant metastasis (P = 0.001). Furthermore, overall survival rate of OSCC patients with high PANDAR expression was poorer than patients with low PANDAR expression (P < 0.001). Cox proportional hazards model analysis showed that expression level of PANDAR can be used as an independent prognostic indicator for OSCC. Functionally, knockdown of PANDAR can inhibit proliferation, invasion, and migration of OSCC cells. CONCLUSIONS: Our findings indicate that PANDAR may serve as a promising prognostic biomarker and a new molecular target for new therapies for OSCC patients.

20.
Plant Cell Rep ; 35(8): 1769-82, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27351994

RESUMO

KEY MESSAGE: Our results based on proteomics data and physiological alterations proposed the putative mechanism of exogenous Spd enhanced salinity tolerance in cucumber seedlings. Current studies showed that exogenous spermidine (Spd) could alleviate harmful effects of salinity. It is important to increase our understanding of the beneficial physiological responses of exogenous Spd treatment, and to determine the molecular responses underlying these responses. Here, we combined a physiological analysis with iTRAQ-based comparative proteomics of cucumber (Cucumis sativus L.) leaves, treated with 0.1 mM exogenous Spd, 75 mM NaCl and/or exogenous Spd. A total of 221 differentially expressed proteins were found and involved in 30 metabolic pathways, such as photosynthesis, carbohydrate metabolism, amino acid metabolism, stress response, signal transduction and antioxidant. Based on functional classification of the differentially expressed proteins and the physiological responses, we found cucumber seedlings treated with Spd under salt stress had higher photosynthesis efficiency, upregulated tetrapyrrole synthesis, stronger ROS scavenging ability and more protein biosynthesis activity than NaCl treatment, suggesting that these pathways may promote salt tolerance under high salinity. This study provided insights into how exogenous Spd protects photosynthesis and enhances salt tolerance in cucumber seedlings.


Assuntos
Cucumis sativus/fisiologia , Fotossíntese/efeitos dos fármacos , Proteômica/métodos , Tolerância ao Sal/efeitos dos fármacos , Plântula/fisiologia , Espermidina/farmacologia , Análise por Conglomerados , Cucumis sativus/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Desenvolvimento Vegetal/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Plântula/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...