Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 40(44): 6273-6283, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34556812

RESUMO

Complete blockade of the HER2 protein itself and HER signaling network is critical to achieving effective HER2-targeted therapies. Despite the success of HER2-targeted therapies, the diseases will relapse in a significant fraction of patients with HER2+ breast cancers. How to improve the therapeutic efficacy of existing HER2-targeted agents remains an unmet clinical need. Here, we uncover a role of Melatonin in diminishing HER2-mediated signaling by destruction of HER2 protein. Mechanistically, Melatonin treatment attenuated the protective effect of the HSP90 chaperone complex on its client protein HER2, triggering ubiquitylation and subsequent endocytic lysosomal degradation of HER2. The inhibitory effect of Melatonin on HER2 signaling substantially enhanced the cytotoxic effects of the pan-HER inhibitor Neratinib in HER2+ breast cancer cells. Lastly, we demonstrate that dual inhibition of HER2 by combined use of Melatonin and Neratinib effectively blocked the growth of HER2+ breast tumor xenografts in vivo. Our findings shed light on the potential use of Melatonin in a novel dual HER2 blockade strategy for HER2+ breast cancer treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Melatonina/administração & dosagem , Quinolinas/administração & dosagem , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Endocitose , Feminino , Humanos , Lisossomos/metabolismo , Células MCF-7 , Melatonina/farmacologia , Camundongos , Proteólise , Quinolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Lett ; 518: 82-93, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34153400

RESUMO

Despite HER2-targeted cancer treatments have provided considerable clinical benefits, resistance to HER2-targeted agents will inevitably develop. Targeting non-oncogene vulnerabilities including endoplasmic reticulum (EnR) stress has emerged as an attractive alternative approach to improve the efficacy of existing targeted cancer therapies. In the current study, we find that Melatonin sensitizes HER2-positive breast cancer cells to the dual tyrosine kinase inhibitor Lapatinib in vitro. Mechanistically, Melatonin enhances the cytotoxic effects of Lapatinib through promoting excessive EnR stress-induced unfolded protein response (UPR) and ROS overaccumulation. Consistently, the antioxidant N-acetylcysteine remarkably reverses the effects of the drug combination on ROS production, DNA damage and cytotoxicity. Furthermore, Melatonin significantly enhances the anti-tumor effect of Lapatinib in an HCC1954 xenograft model. Meanwhile, Lapatinib resistant HER2-positive breast cancer cells (LapR) display lower basal expression levels of UPR genes and enhanced tolerance to EnR stress with attenuated response to Brefeldin A and Tunicamycin. Importantly, Melatonin also increases the sensitivity of HCC1954 LapR cells to Lapatinib. Together, our findings highlight the potential utility of Melatonin as an adjuvant in the treatment of primary or therapy resistant HER2-positive breast cancer via EnR stress-mediated mechanisms.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lapatinib/farmacologia , Melatonina/farmacologia , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
3.
Cell Death Dis ; 12(1): 12, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414468

RESUMO

High levels of Basic Transcription Factor 3 (BTF3) have been associated with prostate cancer. However, the mechanisms underlying the role of BTF3 as an oncogenic transcription factor in prostate tumorigenesis have not been explored. Herein, we report that BTF3 confers oncogenic activity in prostate cancer cells. Mechanistically, while both BTF3 splicing isoforms (BTF3a and BTF3b) promote cell growth, BTF3b, but not BTF3a, regulates the transcriptional expression of the genes encoding the subunits of Replication Factor C (RFC) family that is involved in DNA replication and damage repair processes. BTF3 knockdown results in decreased expression of RFC genes, and consequently attenuated DNA replication, deficient DNA damage repair, and increased G2/M arrest. Furthermore, knockdown of the RFC3 subunit diminishes the growth advantage and DNA damage repair capability conferred by ectopic overexpression of BTF3b. Importantly, we show that enforced BTF3 overexpression in prostate cancer cells induces substantial accumulation of cisplatin-DNA adducts and render the cells more sensitive to cisplatin treatment both in vitro and in vivo. These findings provide novel insights into the role of BTF3 as an oncogenic transcription factor in prostate cancer and suggest that BTF3 expression levels may serve as a potential biomarker to predict cisplatin treatment response.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Proteína de Replicação C/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células , Humanos , Masculino , Oncogenes , Regulação para Cima
4.
Front Oncol ; 11: 812264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155204

RESUMO

While PARP inhibitor (PARPi) therapies have shown promising results in the treatment of high-grade serous ovarian cancer (HGSOC) harboring homologous recombination deficiencies, primary resistance to PARPi frequently occurs and even initial responders may eventually become resistant. Therefore, the development of novel effective combinatorial strategies to treat HGSOC is urgently needed. Here, we report that H2O2-induced oxidative stress sensitized HGSOC cells to PARPi BMN 673. Furthermore, Phenethyl isothiocyanate (PEITC) as a ROS-inducing agent significantly enhanced the cytotoxic effects of BMN 673. Mechanistically, combined use of PEITC and BMN 673 resulted in ROS overproduction and accumulation, enhanced DNA damage, G2/M arrest and apoptosis, all of which were significantly reversed by the ROS scavenger N-Acetyl-L-cysteine. We also showed that while PEITC did not further enhance the ability of BMN 673 on PARP1 trapping in HGSOC cells, the therapeutic effects of the PEITC/BMN 673 combination were at least in part dependent on the presence of PARP1. Importantly, the PEITC/BMN 673 combination potently abrogated the growth of HGSOC tumor spheroids and patient-derived organoid models of HGSOC and cervical cancer. Our findings provide a basis for further investigation of the utility of PARPi combination regimen in HGSOC and cervical cancer through ROS-mediated mechanisms.

5.
Biomaterials ; 210: 83-93, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078314

RESUMO

Chronic infection with hepatitis B virus (HBV) is a major public health problem. Recently, RNA interfering-based strategy has shown great potential to eradicate HBV infection. In current study, we report the experimental observation of plant-derived artificial microRNAs (amiRNAs) acting as therapeutics in HBsAg-/+ transgenic mice. Two pieces of small silencing RNA sequences, siR471 and siR519, against HBV surface antigen gene (HBsAg) were designed and expressed in lettuce using plant endogenous microRNA biogenesis machinery. Administration of amiRNAs-containing lettuce decoction specifically inhibited the HBsAg gene expression. In long term treatments, the liver injury in HBsAg-/+ transgenic mice were alleviated and no toxicological effects were observed. Compared with synthetic siRNA, feeding amiRNAs at a lower level achieved a similar inhibitory effect on HBsAg expression in mice. These results strongly suggest that employing plant endogenous miRNA biogenesis machinery to generate medicinal siRNAs is a novel way to solve the problems of siRNA stability and reduce the potential side effects of RNAi therapy.


Assuntos
Antígenos de Superfície da Hepatite B/metabolismo , Lactuca/genética , Terapêutica com RNAi , Animais , Sequência de Bases , Células Cultivadas , Inativação Gênica , Hepatócitos/metabolismo , Fígado/lesões , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , RNA Interferente Pequeno/genética
6.
Redox Biol ; 24: 101225, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31136958

RESUMO

Cervical cancer has poor prognosis and patients are often diagnosed at advanced stages of the disease with limited treatment options. There is thus an urgent need for the discovery of new therapeutic strategies in cervical cancer. The activation of SGK1 has been linked to the development of various cancer types but little is known about the role of SGK1 in cervical cancer and its potential as a therapeutic target. Here we report that SGK1 is an antioxidative factor that promotes survival of cervical cancer cells. Gene set enrichment analysis of RNA-Seq data reveals a strong inverse association between SGK1 and oxidative phosphorylation. Consistently, inhibition of SGK1 via siRNA or pharmacological inhibitor GSK650394 induces ROS and cytotoxicity upon H2O2 stress. Further analysis of clinical data associates SGK1 with gene expression signatures regulated by the antioxidant transcription factor NRF2 in cervical cancer. Mechanistically, SGK1 activation exerts antioxidant effect through induction of c-JUN-dependent NRF2 expression and activity. Importantly, we find that inhibition of SGK1 confers vulnerability to melatonin as a pro-oxidant, resulting in ROS over-accumulation and consequently enhanced cell cytotoxicity. We further demonstrate that combined use of GSK650394 and melatonin yields substantial regression of cervical tumors in vivo. This work opens new perspectives on the potential of SGK1 inhibitors as sensitizing agents to enable the design of therapeutically redox-modulating strategies against cervical cancer.


Assuntos
Proteínas Imediatamente Precoces/genética , Oxirredução , Proteínas Serina-Treonina Quinases/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/metabolismo , Melatonina/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/patologia
7.
EBioMedicine ; 43: 225-237, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30898650

RESUMO

BACKGROUND: While PARP inhibitors and CDK4/6 inhibitors, the two classes of FDA-approved agents, have shown promising clinical benefits, there is an urgent need to develop new therapeutic strategies to improve clinical response. Meanwhile, extending the utility of these inhibitors beyond their respective molecularly defined cancer types is challenging and will likely require biomarkers predictive of treatment response especially when used in a combination drug development setting. METHODS: The effects of PARP inhibitor Olaparib and CDK4/6 inhibitor Palbociclib on ovarian cancer cells lines including those of high-grade serous histology were examined in vitro and in vivo. We investigated the molecular mechanism underlying the synergistic effects of drug combination. FINDINGS: We show for the first time that combining PARP and CDK4/6 inhibition has synergistic effects against MYC overexpressing ovarian cancer cells both in vitro and in vivo. Mechanistically, we find that Palbociclib induces homologous recombination (HR) deficiency through downregulation of MYC-regulated HR pathway genes, causing synthetic lethality with Olaparib. We further demonstrate that MYC expression determines sensitivity to combinatorial treatment with Olaparib and Palbociclib. INTERPRETATION: Our data provide a rationale for clinical evaluation of therapeutic synergy of these two classes of inhibitors in ovarian cancer patients whose tumors show high MYC expression and who do not respond to PARP inhibitors or CDK4/6 inhibitors monotherapies. FUND: This work was supported by the National Natural Science Foundation of China [81672575, 81874111, 81472447 to HC; 81572586 and 81372853 to PL], and the Liaoning Provincial Key Basic Research Program for Universities [LZ2017002 to HC].


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes myc , Neoplasias Ovarianas/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Instabilidade Genômica , Humanos , Camundongos , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Lett ; 440-441: 54-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315845

RESUMO

Selective phosphatidylinositol 3 kinase (PI3K) inhibitors are being actively tested in clinical trials for ERα-positive (ER+) breast cancer due to the presence of activating PIK3CA mutations. However, recent studies have revealed that increased ERα transcriptional activity limits the efficacy of PI3K inhibitor monotherapy for ER + breast cancers. Herein, we report the identification of BTF3 as an oncogenic transcription factor that regulates ERα expression in luminal breast cancers. Our TCGA analysis reveals high expression levels of BTF3 in luminal/ER + breast cancer and cell line models harboring ERα overexpression. Concordantly, BTF3 expression is highly and strongly associated with ESR1 expression in multiple breast cancer cohorts. We further show that BTF3 promotes the proliferation, survival and migration of ER + breast cancer cells by modulating ESR1 expression and ERα-dependent transcription. Moreover, BTF3 knockdown sensitizes ER + breast cancer cells to the PI3Kα inhibitor BYL-719 in both in vitro and in vivo models. Together, our findings highlight a novel role of BTF3 in modulation of ERα-dependent transcriptional activity and its potential as a predictive marker for the response to PI3K-targeted therapy in ER + breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Receptor alfa de Estrogênio/biossíntese , Feminino , Fase G2/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tiazóis/farmacologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Nutr Biochem ; 57: 197-205, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29751293

RESUMO

MicroRNAs have become the spotlight of the biological community for more than a decade, but we are only now beginning to understand their functions. The detection of stably expressed endogenous microRNAs in human blood suggests that these circulating miRNAs can mediate intercellular communication. Our previous study reported the surprising finding that exogenous rice MIR168a could regulate liver low-density lipoprotein receptor adapter protein 1 (LDLRAP1) gene expression in mice. Here, we show that plant MIR156a, which is abundantly expressed in dietary green veggies, also stably presents in healthy human serum. Compared with age-matched individuals, decreased levels of MIR156a are observed both in serum and blood vessel of cardiovascular disease (CVD) patients. In vitro studies demonstrate that MIR156a can directly target the junction adhesion molecule-A (JAM-A), which is up-regulated in atherosclerotic lesions from CVD patients. Functional studies show that ectopic expression of MIR156a in human aortic endothelial cells reduces inflammatory cytokine-induced monocytes adhesion by suppressing JAM-A. These findings offer a novel vasoprotective molecular mechanism of green veggies through plant microRNAs.


Assuntos
Aterosclerose/patologia , MicroRNAs/farmacologia , Oryza/genética , RNA de Plantas/sangue , RNA de Plantas/farmacologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/patologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
10.
Bioessays ; 34(4): 280-4, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22354805

RESUMO

Food turns out to be not only the nutrient supplier for our body but also a carrier of regulatory information. Interestingly, a recent study made the discovery that some plant/food-derived microRNAs (miRNAs) accumulate in the serum of humans or plant-feeding animals, and regulate mammalian gene expression in a sequence-specific manner. The authors provided striking evidence that miRNAs could function as active signaling molecules to transport information across distinct species or even kingdoms. Although the mechanism of how miRNAs are shuttled between different organisms is still not well characterized, initial results point to the involvement of microvesicles and specific RNA-transporter-like proteins. These findings raise both speculation about the potential impact that plants may have on animal physiology at the molecular level, and an appealing possibility that food-derived miRNAs may offer us another means to deliver necessary nutrients or therapeutics to our bodies.


Assuntos
Alimentos , MicroRNAs/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/farmacologia , RNA de Plantas/metabolismo , RNA de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...