Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-423909

RESUMO

An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to the global public health. Herbal medicines and their derived natural products have drawn much attention to treat COVID-19, but there has been no natural product showing inhibitory activity against SARS-CoV-2 infection with detailed mechanism. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection-routes via lysosome- and transmembrane protease, serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host-entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by a pharmacological inhibition or gene-silencing of NPC1, which is mutated in Niemann-Pick type C (NPC) patients displaying disrupted membrane cholesterol. Finally, readily available local foods or herbal medicines containing PG root show the similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that a brief disruption of membrane cholesterol can be a novel therapeutic approach against SARS-CoV-2 infection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-186304

RESUMO

The World Health Organization (WHO) has declared the Coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of viral RNA by RT-PCR significantly varied according to the sequence of primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be significantly higher than RT-qPCR. These findings suggest that ddPCR could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-090035

RESUMO

Drug repositioning represents an effective way to control the current COVID-19 pandemic. Previously, we identified 24 FDA-approved drugs which exhibited substantial antiviral effect against SARS-CoV-2 in Vero cells. Since antiviral efficacy could be altered in different cell lines, we developed an antiviral screening assay with human lung cells, which is more appropriate than Vero cell. Comparative analysis of antiviral activities revealed that nafamostat is the most potent drug in human lung cells (IC50 = 0.0022{micro}M).

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-999730

RESUMO

COVID-19 is an emerging infectious disease and was recently declared as a pandemic by WHO. Currently, there is no vaccine or therapeutic available for this disease. Drug repositioning represents the only feasible option to address this global challenge and a panel of 48 FDA-approved drugs that have been pre-selected by an assay of SARS-CoV was screened to identify potential antiviral drug candidates against SARS-CoV-2 infection. We found a total of 24 drugs which exhibited antiviral efficacy (0.1 M < IC50 < 10 M) against SARS-CoV-2. In particular, two FDA-approved drugs - niclosamide and ciclesonide - were notable in some respects. These drugs will be tested in an appropriate animal model for their antiviral activities. In near future, these already FDA-approved drugs could be further developed following clinical trials in order to provide additional therapeutic options for patients with COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...