Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 13(10): 6407-24, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26492254

RESUMO

We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against ß-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aß1-42 gene. The methanol extract of C. crispus (CCE), delayed ß-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aß species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of ß-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against ß-amyloid-induced toxicity in C. elegans, partly through reduced ß-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS).


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Chondrus/química , Paralisia/prevenção & controle , Extratos Vegetais/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Western Blotting , Humanos , Metanol/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Regulação para Cima/efeitos dos fármacos
2.
Int J Mol Sci ; 14(2): 3921-45, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23434671

RESUMO

Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein "RS1" was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH.

3.
Biotechnol Biofuels ; 5(1): 47, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22809288

RESUMO

BACKGROUND: Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L.), a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. RESULTS: Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF), was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were differentially expressed during endosperm development. CONCLUSION: The formation of oil bodies in jatropha endosperm is developmentally regulated. The expression of the majority of fatty acid and lipid biosynthetic genes is highly consistent with the development of oil bodies and endosperm in jatropha seeds, while the genes encoding enzymes with similar function may be differentially expressed during endosperm development. These results not only provide the initial information on spatial and temporal expression of fatty acid and lipid biosynthetic genes in jatropha developing endosperm, but are also valuable to identify the rate-limiting genes for storage lipid biosynthesis and accumulation during seed development.

4.
Mar Drugs ; 9(11): 2256-2282, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163185

RESUMO

Tasco(®), a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco(®) water extract (TWE) at 300 µg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C) treated with 300 µg/mL and 600 µg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco(®) imparted thermal stress tolerance in the C. elegans by altering stress related biochemical pathways.


Assuntos
Ascophyllum/química , Regulação para Baixo , Transtornos de Estresse por Calor/prevenção & controle , Regulação para Cima , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Genes Reporter , Espectrometria de Massas , Faringe/metabolismo , Proteínas/genética , Solubilidade , Taxa de Sobrevida , Fatores de Tempo
5.
Plant Cell Rep ; 29(10): 1097-107, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20593185

RESUMO

The hybrid Bacillus thuringiensis (Bt) δ-endotoxin gene Cry1Ab/Ac was used to develop a transgenic Bt rice (Oryza sativa L.) targeting lepidopteran insects of rice. Here, we show the production of a marker-free and tissue-specific expressing transgenic Bt rice line L24 using Agrobacterium-mediated transformation and a chemically regulated, Cre/loxP-mediated DNA recombination system. L24 carries a single copy of marker-free T-DNA that contains the Cry1Ab/Ac gene driven by a maize phosphoenolpyruvate carboxylase (PEPC) gene promoter. The marker-free T-DNA was integrated into the 3' untranslated region of rice gene Os01g0154500 on the short arm of chromosome 1. Compared to the constitutive and non-specific expression of the P (Actin1):Cry1Ab/Ac:T (Nos) gene in the control Bt rice line T51-1, the P ( Pepc ):Cry1Ab/Ac:T (Nos ) gene was detected only in the leaf and stem tissues of L24. More importantly, compared to high levels of CRY1Ab/Ac proteins accumulated in T51-1 seeds, the CRY1Ab/Ac proteins were not detectable in L24 seeds by Western blot analysis. As demonstrated by insect bioassay, L24 provided similar level of resistance to rice leaffolder (Cnaphalocrocis medinalis) as T51-1. The marker-free transgenic line L24 can be used directly in rice breeding for insect resistance to lepidopteran insects where absence of Bt toxin protein in the seed is highly desirable.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Oryza/genética , Controle Biológico de Vetores , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Endotoxinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas Hemolisinas/genética , Lepidópteros , Dados de Sequência Molecular , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Transformação Genética
6.
BMC Res Notes ; 3: 126, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20444276

RESUMO

BACKGROUND: RNA quality and quantity is sometimes unsuitable for cDNA library construction, from plant seeds rich in oil, polysaccharides and other secondary metabolites. Seeds of jatropha (Jatropha curcas L.) are rich in fatty acids/lipids, storage proteins, polysaccharides, and a number of other secondary metabolites that could either bind and/or co-precipitate with RNA, making it unsuitable for downstream applications. Existing RNA isolation methods and commercial kits often fail to deliver high-quality total RNA from immature jatropha seeds for poly(A)+ RNA purification and cDNA synthesis. FINDINGS: A protocol has been developed for isolating good quality total RNA from immature jatropha seeds, whereby a combination of the CTAB based RNA extraction method and a silica column of a commercial plant RNA extraction kit is used. The extraction time was reduced from two days to about 3 hours and the RNA was suitable for poly(A)+ RNA purification, cDNA synthesis, cDNA library construction, RT-PCR, and Northern hybridization. Based on sequence information from selected clones and amplified PCR product, the cDNA library seems to be a good source of full-length jatropha genes. The method was equally effective for isolating RNA from mustard and rice seeds. CONCLUSIONS: This is a simple CTAB + silica column method to extract high quality RNA from oil rich immature jatropha seeds that is suitable for several downstream applications. This method takes less time for RNA extraction and is equally effective for other tissues where the quality and quantity of RNA is highly interfered by the presence of fatty acids, polysaccharides and polyphenols.

7.
J Econ Entomol ; 101(2): 575-83, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18459427

RESUMO

Varietal mutants can be useful for developing durable resistance, understanding categories of resistance, and identifying candidate genes involved in defense responses. We used mutants of rice 'IR64' to isolate new sources of resistance to the planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). We compared two mutants that showed a gain and loss of resistance to N. lugens, to determine the categories of resistance to this pest. Under choice tests, female planthoppers avoided settling and laid fewer eggs on the resistant mutant 'D518' than on the susceptible mutant D1131, susceptible check 'TN1', and wild-type IR64, indicating that antixenosis was the resistance category. Similarly, under no-choice conditions, planthoppers laid 29% fewer eggs in D518 than in IR64, but they oviposited more in 'D1131' and TN1. Honeydew excretion was greater on D1131 seedlings but slightly lower on D518 than on IR64. Nymphal survival and adult female weight did not differ among rice cultivars. D518 showed higher tolerance of N. lugens infestations than IR64. Genetic analysis of the F1, F2, and F3 populations derived from D518 x IR64 revealed that resistance in D518 is dominant and controlled by a single gene. Despite the variation in resistance to N. lugens, both mutants and IR64 performed similarly in the field. The mutant D518 is a new source of durable resistance to N. lugens, mainly due to enhanced antixenosis to female hoppers for settling and oviposition.


Assuntos
Hemípteros/fisiologia , Oryza/genética , Oryza/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Animais , Comportamento Animal , Predisposição Genética para Doença
8.
Theor Appl Genet ; 116(2): 155-63, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17924090

RESUMO

Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating disease of rice (Oryza sativa L). Rice lines that carry resistance (R) gene Xa10 confer race-specific resistance to Xoo strains harboring avirulence (Avr) gene avrXa10. Here we report on genetic study, disease evaluation and fine genetic mapping of the Xa10 gene. The inheritance of Xa10-mediated resistance to PXO99A(pHM1avrXa10) did not follow typical Mendelian inheritance for single dominant gene in F2 population derived from IR24 x IRBB10. A locus might be present in IRBB10 that caused distorted segregation in F2 population. To eliminate this locus, an F3 population (F3-65) was identified, which showed normal Mendelian segregation ratio of 3:1 for resistance and susceptibility. A new near-isogenic line (F3-65-1743) of Xa10 in IR24 genetic background was developed and designated as IRBB10A. IRBB10A retained similar resistance specificity as that of IRBB10 and provided complete resistance to PXO99A(pHM1avrXa10) from seedling to adult stages. Linkage analysis using existing RFLP markers and F2 mapping population mapped the Xa10 locus to the proximal side of E1981S with genetic distance at 0.93 cM. With five new RFLP markers developed from the genomic sequence of Nipponbare, Xa10 was finely mapped at genetic distance of 0.28 cM between proximal marker M491 and distal marker M419 and co-segregated with markers S723 and M604. The physical distance between M491 and M419 on Nipponbare genome is 74 kb. Seven genes have been annotated from this 74-kb region and six of them are possible Xa10 candidates. The results of this study will be useful in Xa10 cloning and marker-assisted breeding.


Assuntos
Mapeamento Cromossômico , Imunidade Inata/genética , Oryza/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Bactérias/genética , Cruzamentos Genéticos , Primers do DNA/genética , Marcadores Genéticos/genética , Genética Populacional , Polimorfismo de Fragmento de Restrição , Transativadores/genética , Xanthomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...