Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(9): 1634-1645, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38411108

RESUMO

0rtho-Nitroaniline (ONA) is a model for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) that shares strong hydrogen bonding character between adjacent nitro and amino groups. This work reports femtosecond time-resolved mass spectrometry (FTRMS) measurements and theoretical calculations that explain the high stability of the ONA cation compared with related nitroaromatic molecules. Ab initio calculations found that the lowest-lying electronic excited state of the ONA cation, D1, lies more than 2 eV above the ground state, and the energetic barriers to rearrangement and dissociation reactions exceed this D1 energy. These theoretical results were confirmed by FTRMS pump-probe measurements showing that (1) fragment ions represented less than 30% of the total ion yield when a 1014 W cm-2, 1300 nm, 20 fs pump pulse was used to ionize ONA; and (2) 3.1 eV (400 nm) photons were required to induce dissociation of the ONA cation. Stronger coupling between the ground D0 and excited D4 states of the ONA cation at the geometry of neutral ONA resulted in a transient enhancement of fragment ion yields at <300 fs pump-probe delay times, prior to relaxation of the ONA cation to its optimal geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...