Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36771875

RESUMO

Variations in starch pasting properties, considered an alternative potential quality classification parameter for rice starches, are directly controlled by the diverse starch molecular composition and structural features. Here, the starch characteristics of four rice cultivars (i.e., RD57, RD29, KDML105, and RD6) differing in pasting properties were assessed, and their relationship was determined. The results revealed that protein and moisture contents and their crystalline type were similar among the four rice starches. However, their molecular compositions and structures (i.e., reducing sugar and amylose contents, amylopectin branch chain-length distributions, granule size and size distribution, and degree of crystallinity) significantly varied among different genotypes, which resulted in distinct swelling, solubility, gelatinization, retrogradation, and hydrolytic resistance properties. The swelling power and gelatinization enthalpy (∆H) were positively correlated with C-type granule and relative crystallinity, but were negatively correlated with amylose content, B-type granule and median particle size (d(0.5)). Conversely, the water solubility and resistant starch content negatively correlated with C-type granule, but positively correlated with amylose content, B-type granule, and d(0.5). The gelatinization onset temperature (To(g)), and retrogradation concluding temperatures (Tc(r)), enthalpy (∆H(r)), and percentage (R%) were positively impacted by the amount of protein, amylose, and B1 chains (DP 13-24), while they were negatively correlated with short A chains (DP 6-12). Collectively, the starch physicochemical and functional properties of these Thai rice starches are attributed to an interplay between compositional and structural features. These results provide decisive and crucial information on rice cultivars' suitability for consumption as cooked rice and for specific industrial applications.

2.
J Sci Food Agric ; 102(1): 370-382, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139029

RESUMO

BACKGROUND: Rice yield and grain quality are highly sensitive to soil salinity. Distinct rice genotypes respond to salinity stress differently. To explore the variation in grain yield and grain trait adaptation to moderate, reproductive-stage salinity stress (4 dS/m electrical conductivity), four rice cultivars differing in degrees of vegetative salt tolerance, including Pokkali (salt-tolerant), RD15 (moderately salt-tolerant), KDML105 (moderately salt-susceptible) and IR29 (salt-susceptible), were examined. RESULTS: Grain fertility and 100-grain weight of RD15, KDML105 and IR29, as well as grain morphology of KDML105 and IR29, were significantly disturbed. Interestingly, grain starch accumulation in RD15 and KDML105 was enhanced under stress. However, only RD15 showed changes in starch physicochemical properties, including increased granule diameter, decreased gelatinization peak temperature (Tp ) and decreased retrogradation onset temperature (To ). Notably, Pokkali maintained productivity, grain quality, and starch properties, while the grain quality of IR29 remained unchanged under salinity stress. Multivariate analysis displayed clear separation of productivity, grain morphology, and starch variables of RD15 in the salt-treated group relative to the control group, suggesting that it was the cultivar most impacted by salt stress despite its moderate salt-tolerance at vegetative stage. CONCLUSION: Our results demonstrate specific salinity responses among the rice genotypes, and suggest discrepancies between degrees of salt tolerance at vegetative stage versus the ability to maintain both grain quality and starch properties in response to salinity stress imposed at reproductive stage. © 2021 Society of Chemical Industry.


Assuntos
Oryza/crescimento & desenvolvimento , Sementes/química , Cloreto de Sódio/metabolismo , Amido/química , Genótipo , Oryza/genética , Oryza/metabolismo , Salinidade , Estresse Salino , Tolerância ao Sal , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cloreto de Sódio/análise , Amido/metabolismo
3.
Foods ; 10(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34828879

RESUMO

Rice production systems and soil characteristics play a crucial role in determining its yield and grain quality. Two elite Thai rice cultivars, namely, KDML105 and RD6, were cultivated in two production systems with distinct soil characteristics, including net-house pot production and open-field production. Under open-field system, KDML105 and RD6 had greater panicle number, total grain weight, 100-grain weight, grain size, and dimension than those grown in the net-house. The amounts of reducing sugar and long amylopectin branch chains (DP 25-36) of the RD6 grains along with the amounts of long branch chains (DP 25-36 and DP ≥ 37), C-type starch granules, and average chain length of the KDML105 were substantially enhanced by the open-field cultivation. Contrastingly, the relative crystallinity of RD6 starch and the amounts of short branch chains (DP 6-12 and DP 13-24), B- and A-type granules, and median granule size of KDML105 starch were significantly suppressed. Consequently, the open-field-grown RD6 starch displayed significant changes in its gelatinization and retrogradation properties, whereas, certain retrogradation parameters and peak viscosity (PV) of KDML105 starches were differentially affected by the distinct cultivating conditions. This study demonstrated the influences of production systems and soil characteristics on the physicochemical properties of rice starches.

4.
Comput Struct Biotechnol J ; 18: 3555-3566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304454

RESUMO

Rice is one of the most economically important commodities globally. However, rice plants are salt susceptible species in which high salinity can significantly constrain its productivity. Several physiological parameters in adaptation to salt stress have been observed, though changes in metabolic aspects remain to be elucidated. In this study, rice metabolic activities of salt-stressed flag leaf were systematically characterized. Transcriptomics and metabolomics data were combined to identify disturbed pathways, altered metabolites and metabolic hotspots within the rice metabolic network under salt stress condition. Besides, the feasible flux solutions in different context-specific metabolic networks were estimated and compared. Our findings highlighted metabolic reprogramming in primary metabolic pathways, cellular respiration, antioxidant biosynthetic pathways, and phytohormone biosynthetic pathways. Photosynthesis and hexose utilization were among the major disturbed pathways in the stressed flag leaf. Notably, the increased flux distribution of the photorespiratory pathway could contribute to cellular redox control. Predicted flux statuses in several pathways were consistent with the results from transcriptomics, end-point metabolomics, and physiological studies. Our study illustrated that the contextualized genome-scale model together with multi-omics analysis is a powerful approach to unravel the metabolic responses of rice to salinity stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...