Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 316: 115307, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658258

RESUMO

High-strength waste activated sludge (WAS) and greasy sludge (GS) were largely generated from canned tuna processing. This study reports the performance of the two-stage anaerobic process for co-digesting WAS and GS. Various WAS:GS mixing ratios of 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, and 100:00 (volatile solids (VS) basis) were investigated in batch acidogenic stage at ambient (30 °C ± 3 °C), 55 °C, and 60 °C temperatures. Subsequently, the effluents from the first stage were used to produce methane in the second methanogenic stage at an ambient temperature. The highest methane yield of 609 mL CH4/g-VSadded was achieved using acidogenic effluents generated from a WAS:GS mixing ratio of 40:60 at an ambient temperature. The first-order kinetic constants (k) for the first (k1) and second (k2) stages were subsequently estimated to be 0.457 d-1 and 0.139 d-1, respectively. The obtained k constants were further used to predict the hydraulic retention time (HRT) for the two continuously stirred tank reactors (CSTR) in series. Consequently, the calculated 4-day HRT and 20-day HRT for 50-L CSTR1 and 250-L CSTR2, respectively, were used to operate the continuous two-stage process at an ambient temperature by feeding with a 40:60-WAS:GS mixing ratio. A satisfactory methane yield of 470-mL CH4/g-VS along with 75% chemical oxygen demand (COD) removal was generated. Furthermore, the predicted methane yield of 450-mL CH4/g-VS obtained from the simple kinetic CSTR model resembled the experimental yield with 96% accuracy. The obtained experimental results demonstrate that WAS and GS co-digestion could be successfully accomplished using a practical two-stage anaerobic process operated at an ambient temperature.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Metano
2.
Water Res ; 221: 118736, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714466

RESUMO

Waste-activated sludge (WAS) and greasy sludge (GS) discharged from the canned tuna industry are considerably characterized as harsh organic wastes to be individually treated by using traditional anaerobic digestion. This study was attempted to anaerobically co-digest WAS and GS in continuous pilot scale two-stage process, comprising the first 50 L continuous stir tank reactor (CSTR1) and the second 250 L continuous stir tank reactor (CSTR2). The two-stage co-digesting operation of dewatered WAS:GS ratio of 0.4:1 (g-VS) at ambient temperature with the organic loading rate (OLR) of 12.6 ± 0.75 g-VS/L·d and 2.26 ± 0.13 g-VS/L·d, corresponding to 3-day and 17-day hydraulic retention time (HRT) for the first and second stage, respectively generated highest methane production rate of 957 ± 86 mL-CH4/L·d, corresponding to methane yield of 423.4 ± 36 mL-CH4/g-VS. Organic removal efficiency obtained was around 67.5% on COD basis. The microbial diversity was depended on the process's activity. Bacteria were mostly detected in the CSTR1, dominating with the phylum Firmicutes and Proteobacteria, whereas genus Methanosaeta archaea were found dominantly in the CSTR2. The economic analysis of process shows payback period (PBP), internal rate of return (IRR), and net present value (NPV) of 3 years, 30%, and 250,177 USD, respectively. This study demonstrated the potential approach to applying the two-stage anaerobic co-digestion process to stabilize both WAS and GS along with generating valuable bioenergy carriers.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Reatores Biológicos/microbiologia , Digestão , Metano , Esgotos/microbiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...