Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 151(17): 174706, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703504

RESUMO

Organic free radicals related to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical are known as photoluminescence-quenchers when coupled to group II-chalcogenide colloidal quantum dots (QDs), but the mechanism responsible for this phenomenon has so far remained unresolved. Using a combination of time-resolved photoluminescence and transient absorption spectroscopies, we demonstrate that photoexcited colloidal CdSe QDs coupled to 4-amino-TEMPO undergo highly efficient reductive quenching, that is, hole transfer from the valence band of the quantum dot to the organic paramagnetic species. Interestingly, the process is shown to occur on a subpicosecond time scale for bound 4AT; such a large rate constant for the extraction of holes from photoexcited CdSe QD by a molecular species is rare and underlines the potential that TEMPO derivatives can play in mediating efficient redox processes involving colloidal CdSe QDs.

2.
J Am Chem Soc ; 140(5): 1725-1736, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29293359

RESUMO

II-VI colloidal semiconductor nanocrystals (NCs), such as CdSe NCs, are often plagued by efficient nonradiative recombination processes that severely limit their use in energy-conversion schemes. While these processes are now well-known to occur at the surface, a full understanding of the exact nature of surface defects and of their role in deactivating the excited states of NCs has yet to be established, which is partly due to challenges associated with the direct probing of the complex and dynamic surface of colloidal NCs. Here, we report a detailed study of the surface of cadmium-rich zinc-blende CdSe NCs. The surfaces of these cadmium-rich species are characterized by the presence of cadmium carboxylate complexes (CdX2) that act as Lewis acid (Z-type) ligands that passivate undercoordinated selenide surface species. The systematic displacement of CdX2 from the surface by N,N,N',N'-tetramethylethylene-1,2-diamine (TMEDA) has been studied using a combination of 1H NMR and photoluminescence spectroscopies. We demonstrate the existence of two independent surface sites that differ strikingly in the binding affinity for CdX2 and that are under dynamic equilibrium with each other. A model involving coupled dual equilibria allows a full characterization of the thermodynamics of surface binding (free energy, as well as enthalpic and entropic terms), showing that entropic contributions are responsible for the difference between the two surface sites. Importantly, we demonstrate that cadmium vacancies only lead to important photoluminescence quenching when created on one of the two sites, allowing a complete picture of the surface composition to be drawn where each site is assigned to specific NC facet locale, with CdX2 binding affinity and nonradiative recombination efficiencies that differ by up to two orders of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...