Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759647

RESUMO

Biomonitoring in indoor environments is a recent application, and so far, indoor air quality (IAQ) has been investigated only in a few cases using photosynthesising biomonitors. On the whole, 22 studies have been selected and reviewed, being specifically focused on the assessment of IAQ using biomonitors, such as lichens (9 papers), mosses (10), or their combination (3). In general, indoor samples face an altered light regime, ventilation, and a reduced hydration, which should be taken into consideration during the design and implementation of indoor monitoring. This review highlights critical issues (and some solutions) related to sample devitalisation (moss), hydration during exposure, preparation of the exposure device (mostly lichen and moss bags), duration of the exposure, post-exposure treatments, assessment of the vitality of the samples, as well as data elaboration and interpretation. This review evidences the feasibility and usefulness of lichen/moss monitoring in indoor environments and the need to develop standardised protocols.

2.
Plants (Basel) ; 12(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570930

RESUMO

Metal micronutrients are essential for plant nutrition, but their toxicity threshold is low. In-depth studies on the response of light-dependent reactions of photosynthesis to metal micronutrients are needed, and the analysis of chlorophyll a fluorescence transients is a suitable technique. The liverwort Marchantia polymorpha L., a model organism also used in biomonitoring, allowed us to accurately study the effects of metal micronutrients in vivo, particularly the early responses. Gametophytes were treated with copper (Cu), iron (Fe) or zinc (Zn) for up to 120 h. Copper showed the strongest effects, negatively affecting almost the entire light phase of photosynthesis. Iron was detrimental to the flux of energy around photosystem II (PSII), while the acceptor side of PSI was unaltered. The impact of Fe was milder than that of Cu and in both cases the structures of the photosynthetic apparatus that resisted the treatments were still able to operate efficiently. The susceptibility of M. polymorpha to Zn was low: although the metal affected a large part of the electron transport chain, its effects were modest and short-lived. Our results may provide a contribution towards achieving a more comprehensive understanding of response mechanisms to metals and their evolution in plants, and may be useful for supporting the development of biomonitoring techniques.

4.
Ecotoxicol Environ Saf ; 229: 113078, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929502

RESUMO

Leptodictyum riparium, a widely distributed aquatic moss, can both tolerate and accumulate very high concentrations of toxic heavy metals, with only slight apparent damage. Here we report the effects on photosynthetic yield, glutathione (GSH), phytochelatin (PCn) synthesis, nitrogen metabolism and cellular localization of molecules rich in SH groups in L. riparium exposed in vitro to heavy metals. We simulated the concentrations of Cu, Zn, Cd, Pb detected in Regi Lagni, Italy, one of the most contaminated freshwater sites in Southern Europe, in the laboratory to test how the moss responds to heavy metal contamination. There was a steady decrease of photosynthetic efficiency correlated with the heavy metal concentrations and ultrastructural organization. All PCn levels increased significantly as the concentration of heavy metals increased, while the GSH levels did not appear to be particularly affected. A significant increase of GDH and NADH-GOGAT activities increased with increasing heavy metal concentration. Immunoblotting analysis revealed an increase of the chl-GS2 while no significant increase was detected in the cyt-GS1. These results give insight into the molecular events underlying the metal-tolerance of the aquatic moss L. riparium exposed to environmental heavy metal concentrations.


Assuntos
Briófitas , Bryopsida , Metais Pesados , Monitoramento Ambiental , Água Doce , Glutationa , Metais Pesados/análise , Metais Pesados/toxicidade
5.
Plants (Basel) ; 10(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919852

RESUMO

Several transition metals are essential for plant growth and development, as they are involved in various fundamental metabolic functions. By contrast, cadmium (Cd) is a metal that can prove extremely toxic for plants and other organisms in a dose-dependent manner. Charophytes and bryophytes are early-diverging streptophytes widely employed for biomonitoring purposes, as they are able to cope with high concentrations of toxic metal(loid)s without showing any apparent heavy damage. In this review, we will deal with different mechanisms that charophytes and bryophytes have evolved to respond to Cd at a cellular level. Particular attention will be addressed to strategies involving Cd vacuolar sequestration and cell wall immobilization, focusing on specific mechanisms that help achieve detoxification. Understanding the effects of metal(loid) pollution and accumulation on the morpho-physiological traits of charophytes and bryophytes can be in fact fundamental for optimizing their use as phytomonitors and/or phytoremediators.

7.
J Exp Bot ; 71(20): 6655-6669, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32936292

RESUMO

Phytochelatin synthases (PCSs) play essential roles in detoxification of a broad range of heavy metals in plants and other organisms. Until now, however, no PCS gene from liverworts, the earliest branch of land plants and possibly the first one to acquire a PCS with a C-terminal domain, has been characterized. In this study, we isolated and functionally characterized the first PCS gene from a liverwort, Marchantia polymorpha (MpPCS). MpPCS is constitutively expressed in all organs examined, with stronger expression in thallus midrib. The gene expression is repressed by Cd2+ and Zn2+. The ability of MpPCS to increase heavy metal resistance in yeast and to complement cad1-3 (the null mutant of the Arabidopsis ortholog AtPCS1) proves its function as the only PCS from M. polymorpha. Site-directed mutagenesis of the most conserved cysteines of the C-terminus of the enzyme further uncovered that two twin-cysteine motifs repress, to different extents, enzyme activation by heavy metal exposure. These results highlight an ancestral function of the PCS elusive C-terminus as a regulatory domain inhibiting enzyme overactivation by essential and non-essential heavy metals. The latter finding may be relevant for obtaining crops with decreased root to shoot mobility of cadmium, thus preventing its accumulation in the food chain.


Assuntos
Aminoaciltransferases , Proteínas de Arabidopsis , Arabidopsis , Aminoaciltransferases/genética , Arabidopsis/genética , Cádmio/toxicidade , Fitoquelatinas
8.
Plants (Basel) ; 9(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698350

RESUMO

This paper reports functional studies on the enzyme phytochelatin synthase in the liverwort Marchantia polymorpha and the cyanobacterium Geitlerinema sp. strain PCC 7407. In vitro activity assays in control samples (cadmium-untreated) showed that phytochelatin synthase was constitutively expressed in both organisms. In the presence of 100 µM cadmium, in both the liverwort and the cyanobacterium, the enzyme was promptly activated in vitro, and produced phytochelatins up to the oligomer PC4. Likewise, in vivo exposure to 10-36 µM cadmium for 6-120 h induced in both organisms phytochelatin synthesis up to PC4. Furthermore, the glutathione (GSH) levels in M. polymorpha were constitutively low (compared with the average content in higher plants), but increased considerably under cadmium stress. Conversely, the GSH levels in Geitlerinema sp. PCC 7407 were constitutively high, but were halved under metal treatments. At odds with former papers, our results demonstrate that, as in M. polymorpha and other plants, the cyanobacterial phytochelatin synthase exposed to cadmium possesses manifest transpeptidasic activity, being able to synthesize phytochelatins with a degree of oligomerization higher than PC2. Therefore, prokaryotic and eukaryotic phytochelatin synthases differ less in functional terms than previously thought.

9.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111035

RESUMO

In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes.


Assuntos
Aminoaciltransferases/metabolismo , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Glutationa Transferase/metabolismo , Fitoquelatinas/metabolismo , Estresse Fisiológico/fisiologia , Antioxidantes , Biodegradação Ambiental , Monitoramento Biológico , Cádmio/administração & dosagem , Parede Celular/metabolismo , Clorofila , Células Germinativas Vegetais , Glutationa , Metais , Espécies Reativas de Oxigênio/metabolismo
10.
Phytochemistry ; 164: 215-222, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177054

RESUMO

Although thiol-peptide compounds, such as reduced glutathione (GSH), γ-glutamylcysteine (γ-EC), and phytochelatins, play fundamental roles in plants, their analytical determination and characterization is still somewhat problematic, mainly due to their high polarity and oxidation propensity. Thus, in this work a reliable and sensitive HPLC-ESI-MS-MS method was developed, in order to simultaneously assay, within 14-min instrumental runs, γ-EC, GSH, and phytochelatins up to phytochelatin 4. This analytical method was validated in shoot and root extracts of the model plant Arabidopsis thaliana (Brassicaceae) and guaranteed accurate quantification by using specific isotope labelled-internal standards for both GSH and phytochelatins, as well as standards for external calibration. Good linearities in the method performance were observed (R > 0.99), with a dynamic range over three orders of magnitude in thiol-peptide concentrations. In MRM mode, the detection sensitivity of the thiol-peptides was equal to approximately 16, 6, 7, 13, 10 fmol for γ-EC, GSH, phytochelatin 2, phytochelatin 3, and phytochelatin 4, respectively (20 µl injection each). The reproducibility of the method was confirmed by high intra- and inter-day accuracy and precision values. The recovery rates were estimated approximately in the range of 73.8-91.0% and the matrix effect evaluation revealed that all analytes exhibited ionization suppression. The use of stable isotope-labelled analogs of the thiol-peptides as internal standards was particularly worthy of note: it offered the considerable advantage of overcoming the consequences of matrix effect and thiol-peptide loss through sample preparation, by normalizing the analyte signal during the quantification process. Thus, by validating the method's sensitivity, accuracy, precision, reproducibility, stability, recovery, and matrix effect, data reliability and robustness were ensured.


Assuntos
Arabidopsis/química , Peptídeos/análise , Compostos de Sulfidrila/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
11.
J Exp Bot ; 70(19): 5391-5405, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31145784

RESUMO

Phytochelatin synthases (PCSs) play pivotal roles in the detoxification of heavy metals and metalloids in plants; however, little information on the evolution of recently duplicated PCS genes in plant species is available. Here we characterize the evolution and functional differentiation of three PCS genes from the giant reed (Arundo donax L.), a biomass/bioenergy crop with remarkable resistance to cadmium and other heavy metals. Phylogenetic reconstruction with PCS genes from fully sequenced monocotyledonous genomes indicated that the three A. donax PCSs, namely AdPCS1-3, form a monophyletic clade. The AdPCS1-3 genes were expressed at low levels in many A. donax organs and displayed different levels of cadmium-responsive expression in roots. Overexpression of AdPCS1-3 in Arabidopsis thaliana and yeast reproduced the phenotype of functional PCS genes. Mass spectrometry analyses confirmed that AdPCS1-3 are all functional enzymes, but with significant differences in the amount of the phytochelatins synthesized. Moreover, heterogeneous evolutionary rates characterized the AdPCS1-3 genes, indicative of relaxed natural selection. These results highlight the elevated functional differentiation of A. donax PCS genes from both a transcriptional and an enzymatic point of view, providing evidence of the high evolvability of PCS genes and of plant responsiveness to heavy metal stress.


Assuntos
Aminoaciltransferases/genética , Evolução Molecular , Proteínas de Plantas/genética , Poaceae/genética , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poaceae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência/veterinária
12.
Sci Total Environ ; 650(Pt 2): 2705-2716, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373051

RESUMO

This study focused on crop plant response to a simultaneous exposure to biosolid and TiO2 at micro- and nano-scale, being biosolid one of the major sink of TiO2 nanoparticles released into the soil environment. We settled an experimental design as much as possible realistic, at microcosm scale, using the crop Pisum sativum. This experimental design supported the hypotheses that the presence of biosolid in the farming soil might influence plant growth and metabolism and that, after TiO2 spiking, the different dimension and crystal forms of TiO2 might be otherwise bioavailable and differently interacting with the plant system. To test these hypotheses, we have considered different aspects of the response elicited by TiO2 and biosolid at cellular and organism level, focusing on the root system, with an integrative approach. In our experimental conditions, the presence of biosolid disturbed plant growth of P. sativum, causing cellular damages at root level, probably through mechanisms not only oxidative stress-dependent but also involving altered signalling processes. These disturbances could depend on non-humified compounds and/or on the presence of toxic elements and of nanoparticles in the biosolid-amended soil. The addition of TiO2 particles in the sludge-amended soil, further altered plant growth and induced oxidative and ultrastructural damages. Although non typical dose-effect response was detected, the most responsiveness treatments were found for the anatase crystal form, alone or mixed with rutile. Based on ultrastructural observations, we could hypothesise that the toxicity level of TiO2 nanoparticles may depend on the cell ability to isolate nanoparticles in subcellular compartments, avoiding their interaction with organelles and/or metabolic processes. The results of the present work suggest reflections on the promising practice of soil amendments and on the use of nanomaterials and their safety for food plants and living organisms.

13.
Plant Physiol Biochem ; 127: 88-96, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29554573

RESUMO

Although some charophytes (sister group to land plants) have been shown to synthesize phytochelatins (PCs) in response to cadmium (Cd), the functional characterization of their phytochelatin synthase (PCS) is still completely lacking. To investigate the metal response and the presence of PCS in charophytes, we focused on the species Nitella mucronata. A 40 kDa immunoreactive PCS band was revealed in mono-dimensional western blot by using a polyclonal antibody against Arabidopsis thaliana PCS1. In two-dimensional western blot, the putative PCS showed various spots with acidic isoelectric points, presumably originated by post-translational modifications. Given the PCS constitutive expression in N. mucronata, we tested its possible involvement in the homeostasis of metallic micronutrients, using physiological concentrations of iron (Fe) and zinc (Zn), and verified its role in the detoxification of a non-essential metal, such as Cd. Neither in vivo nor in vitro exposure to Zn resulted in PCS activation and PC significant biosynthesis, while Fe(II)/(III) and Cd were able to activate the PCS in vitro, as well as to induce PC accumulation in vivo. While Cd toxicity was evident from electron microscopy observations, the normal morphology of cells and organelles following Fe treatments was preserved. The overall results support a function of PCS and PCs in managing Fe homeostasis in the carophyte N. mucronata.


Assuntos
Aminoaciltransferases , Homeostase/fisiologia , Ferro/metabolismo , Nitella , Proteínas de Plantas , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Nitella/genética , Nitella/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
14.
Front Plant Sci ; 9: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403524

RESUMO

The enzyme phytochelatin synthase (PCS) has long been studied with regard to its role in metal(loid) detoxification in several organisms, i.e., plants, yeasts, and nematodes. It is in fact widely recognized that PCS detoxifies a number of heavy metals by catalyzing the formation of thiol-rich oligomers, namely phytochelatins, from glutathione and related peptides. However, recent investigations have highlighted other possible roles played by the PCS enzyme in the plant cell, e.g., the control of pathogen-triggered callose deposition. In order to examine novel aspects of Arabidopsis thaliana PCS1 (AtPCS1) functions and to elucidate its possible roles in the secondary metabolism, metabolomic data of A. thaliana wild-type and cad1-3 mutant were compared, the latter lacking AtPCS1. HPLC-ESI-MS analysis showed differences in the relative levels of metabolites from the glucosinolate and phenylpropanoid pathways between cad1-3 and wild-type plants. Specifically, in control (Cd-untreated) plants, higher levels of 4-methoxy-indol-3-ylmethylglucosinolate were found in cad1-3 plants vs. wild-type. Moreover, the cad1-3 mutant showed to be impaired in the deposit of callose after Cd exposure, suggesting that AtPCS1 protects the plant against the toxicity of heavy metals not only by synthesizing PCs, but also by contributing to callose deposition. In line with the contribution of callose in counteracting Cd toxicity, we found that another callose-defective mutant, pen2-1, was more sensitive to high concentrations of Cd than wild-type plants. Moreover, cad1-3 plants were more susceptible than wild-type to the hemibiotrophic bacterial pathogen Pseudomonas syringae. The metabolome also revealed differences in the relative levels of hydroxycinnamic acids and flavonols, with consequences on cell wall properties and auxin content, respectively. First, increased lignification in the cad1-3 stems was found, probably aimed at counteracting the entry of Cd into the inner tissues. Second, in cad1-3 shoots, increased relative levels of kaempferol 3,7 dirhamnoside and quercetin hexoside rhamnoside were detected. These flavonols are endogenous inhibitors of auxin transport in planta; auxin levels in both roots and shoots of the cad1-3 mutant were in fact lower than those of the wild-type. Overall, our data highlight novel aspects of AtPCS1 functions in A. thaliana.

15.
Planta ; 243(3): 605-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26563149

RESUMO

MAIN CONCLUSION: The heterologous expression of AtPCS1 in tobacco plants exposed to arsenic plus cadmium enhances phytochelatin levels, root As/Cd accumulation and pollutants detoxification, but does not prevent root cyto-histological damages. High phytochelatin (PC) levels may be involved in accumulation and detoxification of both cadmium (Cd) and arsenic (As) in numerous plants. Although polluted environments are frequently characterized by As and Cd coexistence, how increased PC levels affect the adaptation of the entire plant and the response of its cells/tissues to a combined contamination by As and Cd needs investigation. Consequently, we analyzed tobacco seedlings overexpressing Arabidopsis phytochelatin synthase1 gene (AtPCS1) exposed to As and/or Cd, to evaluate the levels of PCs and As/Cd, the cyto-histological modifications of the roots and the Cd/As leaf extrusion ability. When exposed to As and/or Cd the plants overexpressing AtPCS1 showed higher PC levels, As plus Cd root accumulation, and detoxification ability than the non-overexpressing plants, but a blocked Cd-extrusion from the leaf trichomes. In all genotypes, As, and Cd in particular, damaged lateral root apices, enhancing cell-vacuolization, causing thinning and stretching of endodermis initial cells. Alterations also occurred in the primary structure region of the lateral roots, i.e., cell wall lignification in the external cortex, cell hypertrophy in the inner cortex, crushing of endodermis and stele, and nuclear hypertrophy. Altogether, As and/or Cd caused damage to the lateral roots (and not to the primary one), with such damage not counteracted by AtPCS1 overexpression. The latter, however, positively affected accumulation and detoxification to both pollutants, highlighting that Cd/As accumulation and detoxification due to PCS1 activity do not reduce the cyto-histological damage.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arsênio/metabolismo , Cádmio/metabolismo , Fitoquelatinas/metabolismo , Aminoaciltransferases/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Arsênio/toxicidade , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , Inativação Metabólica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Nicotiana/genética , Nicotiana/fisiologia
16.
Plant Physiol Biochem ; 92: 11-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900420

RESUMO

Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated the role of AM fungus Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler in protecting Nicotiana tabacum L. (cv. Petit Havana) from the above-mentioned metal(loid) stress. Our findings proved that the AM symbiosis is effective in increasing the plant tissue content of the antioxidant glutathione (GSH), in influencing the amount of metal(loid)-induced chelators as phytochelatins, and in reducing the Cd and As content in leaves and roots of adult tobacco plants. These results might also prove useful in improving the quality of commercial tobacco, thus reducing the risks to human health due to inhalation of toxic elements contained in smoking products.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Glomeromycota/metabolismo , Glutationa/metabolismo , Micorrizas/metabolismo , Nicotiana/metabolismo , Simbiose , Adaptação Fisiológica , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico
17.
Plant Cell Physiol ; 55(11): 1884-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25189342

RESUMO

Lunularia cruciata occupies a very basal position in the phylogenetic tree of liverworts, which in turn have been recognized as a very early clade of land plants. It would therefore seem appropriate to take L. cruciata as the startingpoint for investigating character evolution in plants' metal(loid) response. One of the strongest evolutionary pressures for land colonization by plants has come from potential access to much greater amounts of nutritive ions from surface rocks, compared to water. This might have resulted in the need to precisely regulate trace element homeostasis and to minimize the risk of exposure to toxic concentrations of certain metals, prompting the evolution of a number of response mechanisms, such as synthesis of phytochelatins, metal(loid)-binding thiol-peptides. Accordingly, if the ability to synthesize phytochelatins and the occurrence of an active phytochelatin synthase are traits present in a basal liverwort species, and have been even reinforced in 'modern' tracheophytes, e.g. Arabidopsis thaliana, then such traits would presumably have played an essential role in plant fitness over time. Hence, we demonstrated here that: (i) L. cruciata compartmentalizes cadmium in the vacuoles of the phototosynthetic parenchyma by means of a phytochelatin-mediated detoxification strategy, and possesses a phytochelatin synthase that is activated by cadmium and homeostatic concentrations of iron(II) and zinc; and (ii) A. thaliana phytochelatin synthase displays a higher and broader response to several metal(loid)s [namely: cadmium, iron(II), zinc, copper, mercury, lead, arsenic(III)] than L. cruciata phytochelatin synthase.


Assuntos
Aminoaciltransferases/metabolismo , Cádmio/metabolismo , Hepatófitas/metabolismo , Hepatófitas/ultraestrutura , Ferro/metabolismo , Zinco/metabolismo , Proteínas de Arabidopsis/metabolismo , Microanálise por Sonda Eletrônica , Embriófitas/metabolismo , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/ultraestrutura , Hepatófitas/efeitos dos fármacos , Inativação Metabólica , Metais/análise , Metais/metabolismo , Metais/farmacologia , Microscopia Eletrônica de Varredura , Fitoquelatinas/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo
18.
J Exp Bot ; 65(4): 1153-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24449382

RESUMO

Bryophytes, a paraphyletic group which includes liverworts, mosses, and hornworts, have been stated as land plants that under metal stress (particularly cadmium) do not synthesize metal-binding peptides such as phytochelatins. Moreover, very little information is available to date regarding phytochelatin synthesis in charophytes, postulated to be the direct ancestors of land plants, or in lycophytes, namely very basal tracheophytes. In this study, it was hypothesized that basal land plants and charophytes have the capability to produce phytochelatins and possess constitutive and functional phytochelatin synthases. To verify this hypothesis, twelve bryophyte species (six liverworts, four mosses, and two hornworts), three charophytes, and two lycophyte species were exposed to 0-36 µM cadmium for 72 h, and then assayed for: (i) glutathione and phytochelatin quali-quantitative content by HPLC and mass spectrometry; (ii) the presence of putative phytochelatin synthases by western blotting; and (iii) in vitro activity of phytochelatin synthases. Of all the species tested, ten produced phytochelatins in vivo, while the other seven did not. The presence of a constitutively expressed and functional phytochelatin synthase was demonstrated in all the bryophyte lineages and in the lycophyte Selaginella denticulata, but not in the charophytes. Hence, current knowledge according to phytochelatins have been stated as being absent in bryophytes was therefore confuted by this work. It is argued that the capability to synthesize phytochelatins, as well as the presence of active phytochelatin synthases, are ancestral (plesiomorphic) characters for basal land plants.


Assuntos
Aminoaciltransferases/genética , Cádmio/farmacologia , Embriófitas/enzimologia , Fitoquelatinas/metabolismo , Aminoaciltransferases/metabolismo , Briófitas/efeitos dos fármacos , Briófitas/enzimologia , Briófitas/genética , Carofíceas/efeitos dos fármacos , Carofíceas/enzimologia , Carofíceas/genética , Embriófitas/efeitos dos fármacos , Embriófitas/genética , Glutationa/química , Glutationa/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Fitoquelatinas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Traqueófitas/efeitos dos fármacos , Traqueófitas/enzimologia , Traqueófitas/genética
19.
Physiol Plant ; 149(4): 487-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23496095

RESUMO

To date, almost no information is available in roots and shoots of the model plant Arabidopsis thaliana about the hierarchic relationship between metal accumulation, phytohormone levels, and glutathione/phytochelatin content, and how this relation affects root development. For this purpose, specific concentrations of cadmium, copper and zinc, alone or in triple combination, were supplied for 12 days to in vitro growing seedlings. The accumulation of these metals was measured in roots and shoots, and a significant competition in metal uptake was observed. Microscopic analyses revealed that root morphology was affected by metal exposure, and that the levels of trans-zeatin riboside, dihydrozeatin riboside, indole-3-acetic acid and the auxin/cytokinin ratio varied accordingly. By contrast, under metal treatments, minor modifications in gibberellic acid and abscisic acid levels occurred. Real-time polymerase chain reaction analysis of some genes involved in auxin and cytokinin synthesis (e.g. AtNIT in roots and AtIPT in shoots) showed on average a metal up-regulated transcription. The production of thiol-peptides was induced by all the metals, alone or in combination, and the expression of the genes involved in thiol-peptide synthesis (AtGSH1, AtGSH2, AtPCS1 and AtPCS2) was not stimulated by the metals, suggesting a full post-transcriptional control. Results show that the Cd/Cu/Zn-induced changes in root morphology are caused by a hormonal unbalance, mainly governed by the auxin/cytokinin ratio.


Assuntos
Arabidopsis/fisiologia , Homeostase , Metais/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cádmio/toxicidade , Cobre/toxicidade , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Zinco/toxicidade
20.
Plant Physiol Biochem ; 58: 269-79, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22868210

RESUMO

Very few studies have provided information about the effects of cadmium (Cd) at histoanatomical and ultrastructural levels, along with potential localization of the metal in planta. In particular, from this standpoint, almost nothing is known in Daucus carota L. (carrot), a particularly important species for in vitro and in vivo functional investigations. In this work we hypothesized that 36 µM Cd, supplied for 1, 2, 3, 4, 7 and 14 days to 30-day-old in vitro-cultured plants, might induce an early acclimation, but a final collapse of roots and leaves. In fact, as a general feature, a biphasic root response to Cd stress actually took place: in the first phase (1-4 days of Cd exposure), the cytological and functional events observed - by light microscopy, TEM, epifluorescence, as well as by the time-course of thiol-peptide compounds - can be interpreted as acclimatory responses aimed at diminishing the movement of Cd across the root. The second phase (from 4 to 14 days of Cd exposure) was instead characterized by cell hypertrophy, cell-to-cell separation events, increase in α-ß-γ-tocopherol levels and, not least, endocytogenic processes, coupled with a dramatic drop in the amount of thiol-peptide compounds. These events led to a progressive root collapse, even if they did not ingenerate macro/microscopic injury symptoms in leaf blades and petioles.


Assuntos
Aclimatação , Cádmio/farmacologia , Daucus carota/efeitos dos fármacos , Metais Pesados/farmacologia , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/farmacologia , Estresse Fisiológico , Cádmio/metabolismo , Daucus carota/citologia , Daucus carota/metabolismo , Metais Pesados/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Poluentes do Solo/metabolismo , Compostos de Sulfidrila/metabolismo , gama-Tocoferol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...