Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 114(2): 393-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37581435

RESUMO

Peanuts grown in tropical, subtropical, and temperate regions are susceptible to stem rot, which is a soilborne disease caused by Athelia rolfsii. Due to the lack of reliable environmental-based scheduling recommendations, stem rot control relies heavily on fungicides that are applied at predetermined intervals. We conducted inoculated field experiments for six site-years in North Florida to examine the relationship between germination of A. rolfsii sclerotia: the inoculum, stem rot symptom development in the peanut crop, and environmental factors such as soil temperature (ST), soil moisture, relative humidity (RH), precipitation, evapotranspiration, and solar radiation. Window-pane analysis with hourly and daily environmental data for 5- to 28-day periods before each disease assessment were evaluated to select model predictors using correlation analysis, regularized regression, and exhaustive feature selection. Our results indicated that within-canopy ST (at 0.05 m belowground) and RH (at 0.15 m aboveground) were the most important environmental variables that influenced the progress of mycelial activity in susceptible peanut crops. Decision tree analysis resulted in an easy-to-interpret one-variable model (adjusted R2 = 0.51, Akaike information criterion [AIC] = 324, root average square error [RASE] = 14.21) or two-variable model (adjusted R2 = 0.61, AIC = 306, RASE = 10.95) that provided an action threshold for various disease scenarios based on number of hours of canopy RH above 90% and ST between 25 and 35°C in a 14-day window. Coupling an existing preseason risk index for stem rot, such as Peanut Rx, with the environmentally based predictors identified in this study would be a logical next step to optimize stem rot management. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Arachis , Doenças das Plantas , Doenças das Plantas/prevenção & controle , Produtos Agrícolas , Solo , Gerenciamento Clínico
2.
Phytopathology ; 114(1): 126-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37531626

RESUMO

Athelia rolfsii, causal agent of "southern blight" disease, is a soilborne fungal pathogen with a wide host range of more than 500 species. This study's objectives were to (i) quantify the effects of two environmental factors, temperature and soil moisture, on germination of A. rolfsii inoculum (sclerotia), which is a critical event for the onset of disease epidemics and (ii) predict the timing of sclerotial germination by applying population-based threshold-type hydrothermal time (HTT) models. We conducted in vitro germination experiments with three isolates of A. rolfsii isolated from peanuts, which were tested at five temperatures (T), ranging from 17 to 40°C, four matric potentials (Ψm) between -0.12 and -1.57 MPa, and two soil types (fine sand and loamy fine sand), using a factorial design. When Ψm was maintained between -0.12 and -0.53 MPa, T from 22 to 34°C was found to be conducive to sclerotial germination (>50%). The HTT models were fitted for a range of T (22 to 34°C) and Ψm (-0.12 to -1.57 MPa) that accounted for 84% or more of variation in the timing of sclerotial germination. The estimated base T ranged between 0 and 4.5°C and the estimated base Ψm between -2.96 and -1.52 MPa. The results suggest that the HTT modeling approach is a suitable means of predicting the timing of A. rolfsii sclerotial germination. This HTT methodology can potentially be tested to fine-tune fungicide application timing and in-season A. rolfsii management strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ascomicetos , Basidiomycota , Germinação , Areia , Doenças das Plantas/microbiologia , Solo
3.
Plant Dis ; 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33754865

RESUMO

Diverse field characteristics, weather patterns, and management practices can result in variable microclimates. The objective was to relate in-field microclimate conditions with peanut diseases and yield and determine the effect of irrigation and fungicides within these environments. Irrigation did not have a major impact on disease and yield. Stem rot (Athelia rolfsii) and early (Passalora arachidicola) and late (Nothopassalora personata) leaf spot were most affected by changes in environmental patterns across seasons. Average non-treated stem rot was 12.9% in 2017 which dropped considerably in 2018 to 0.2% but emerged again in 2019 to 3.2%. Stem rot incidence varied across the field, and the response to fungicides depended on management zone. Leaf spot defoliation in non-treated plots was severe in 2019 reaching an average of 73% at 126 days after planting but only reached 15% in 2017 and 35% in 2019 at the same stage. A low-input fungicide schedule was able to reduce foliar disease in all zones and seasons, but the microclimatic conditions in the low-lying area favored leaf spot in 2017 and 2018 although not in the dryer 2019 season. Seasonal differences in disease and plant growth affected the level of protection against average yield loss using a standard low-input program which in 2017 (527 kg/ha) was not as great as 2018 (2,235 kg/ha) or 2019 (1,763 kg/ha). Disease prediction models built on dynamic environmental factors in the context of multiple pathogens and natural field conditions could be developed to improve within-season management decisions for more efficient fungicide inputs.

4.
Plant Dis ; 103(5): 825-831, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806575

RESUMO

Brown rust (caused by Puccinia melanocephala) and orange rust (caused by P. kuehnii) are two major diseases of sugarcane in Florida. To better understand the epidemiology of these two rusts, disease severity and weather variables were monitored for two seasons in cultivars CL90-4725 (susceptible to brown rust and resistant to orange rust) and CL85-1040 (susceptible to orange rust and resistant to brown rust). Brown rust was most severe during mid-May to mid-July, whereas orange rust severity peaked during two periods: mid-May to early August and then November to December. Overall, disease severity was higher for orange rust than for brown rust. Maximum disease severity was correlated with the number of hours at night with an average temperature of 20 to 22.2°C for brown rust one season and orange rust both seasons. Slightly higher correlation was obtained when relative humidity above 90% was included in the number of hours at night with an average temperature of 20 to 22.2°C for brown rust but not orange rust, suggesting that leaf wetness is not a limiting factor for either disease in Florida. Epidemics of brown rust began at lower night temperatures (16.7 to 22.2°C) in one season, but epidemics of orange rust lasted longer under higher temperatures. The correlation of rust severity on recently emerged leaves with conducive temperatures recorded in 10-, 20-, or 30-day windows starting 7 days before disease assessment suggested that earlier inoculum production is needed to create severe epidemics that result in yield loss.


Assuntos
Basidiomycota , Citrus sinensis , Doenças das Plantas , Saccharum , Basidiomycota/fisiologia , Citrus sinensis/microbiologia , Florida , Doenças das Plantas/microbiologia , Fatores de Risco , Saccharum/microbiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...