Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557505

RESUMO

The number of individuals with upper or lower extremities dysfunction (ULED) has considerably increased in the past few decades, resulting in a high economic burden for their families and society. Individuals with ULEDs require assistive robots to fulfill all their activities of daily living (ADLs). However, a theory for the optimal design of assistive robots that reduces energy consumption while increasing the workspace is unavailable. Thus, this research presents an algorithm for the optimal link length selection of an assistive robot mounted on a wheelchair to minimize the torque demands of each joint while increasing the workspace coverage. For this purpose, this research developed a workspace to satisfy a list of 18 ADLs. Then, three torque indices from the literature were considered as performance measures to minimize; the three torque measures are the quadratic average torque (QAT), the weighted root square mean (WRMS), and the absolute sum of torques (AST). The proposed algorithm evaluates any of the three torque measures within the workspace, given the robot dimensions. This proposed algorithm acts as an objective function, which is optimized using a genetic algorithm for each torque measure. The results show that all tree torque measures are suitable criteria for assistance robot optimization. However, each torque measures yield different optimal results; in the case of the QAT optimization, it produces the least workspace with the minimum overall torques of all the joints. Contrarily, the WRMS and AST optimization yield similar results generating the maximum workspace coverage but with a greater overall torque of all joints. Thus, the selection between the three methods depends on the designer's criteria. Based on the results, the presented methodology is a reliable tool for the optimal dimensioning of assistive robots.

2.
Front Robot AI ; 9: 885610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937617

RESUMO

Throughout the last decade, many assistive robots for people with disabilities have been developed; however, researchers have not fully utilized these robotic technologies to entirely create independent living conditions for people with disabilities, particularly in relation to activities of daily living (ADLs). An assistive system can help satisfy the demands of regular ADLs for people with disabilities. With an increasing shortage of caregivers and a growing number of individuals with impairments and the elderly, assistive robots can help meet future healthcare demands. One of the critical aspects of designing these assistive devices is to improve functional independence while providing an excellent human-machine interface. People with limited upper limb function due to stroke, spinal cord injury, cerebral palsy, amyotrophic lateral sclerosis, and other conditions find the controls of assistive devices such as power wheelchairs difficult to use. Thus, the objective of this research was to design a multimodal control method for robotic self-assistance that could assist individuals with disabilities in performing self-care tasks on a daily basis. In this research, a control framework for two interchangeable operating modes with a finger joystick and a chin joystick is developed where joysticks seamlessly control a wheelchair and a wheelchair-mounted robotic arm. Custom circuitry was developed to complete the control architecture. A user study was conducted to test the robotic system. Ten healthy individuals agreed to perform three tasks using both (chin and finger) joysticks for a total of six tasks with 10 repetitions each. The control method has been tested rigorously, maneuvering the robot at different velocities and under varying payload (1-3.5 lb) conditions. The absolute position accuracy was experimentally found to be approximately 5 mm. The round-trip delay we observed between the commands while controlling the xArm was 4 ms. Tests performed showed that the proposed control system allowed individuals to perform some ADLs such as picking up and placing items with a completion time of less than 1 min for each task and 100% success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...