Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(1): 016601, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478453

RESUMO

Topological entanglement entropy (TEE) is a key diagnostic of topological order, allowing one to detect the presence of Abelian or non-Abelian anyons. However, there are currently no experimentally feasible protocols to measure TEE in condensed matter systems. Here, we propose a scheme to measure the TEE of chiral topological phases, carrying protected edge states, based on a nontrivial connection with the thermodynamic entropy change occurring in a quantum point contact (QPC) as it pinches off the topological liquid into two. We show how this entropy change can be extracted using Maxwell relations from charge detection of a nearby quantum dot. We demonstrate this explicitly for the Abelian Laughlin states, using an exact solution of the sine-Gordon model describing the universal crossover in the QPC. Our approach might open a new thermodynamic detection scheme of topological states also with non-Abelian statistics.

2.
Proc Natl Acad Sci U S A ; 118(45)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34732570

RESUMO

Turbulence generally arises in shear flows if velocities and hence, inertial forces are sufficiently large. In striking contrast, viscoelastic fluids can exhibit disordered motion even at vanishing inertia. Intermediate between these cases, a state of chaotic motion, "elastoinertial turbulence" (EIT), has been observed in a narrow Reynolds number interval. We here determine the origin of EIT in experiments and show that characteristic EIT structures can be detected across an unexpectedly wide range of parameters. Close to onset, a pattern of chevron-shaped streaks emerges in qualitative agreement with linear and weakly nonlinear theory. However, in experiments, the dynamics remain weakly chaotic, and the instability can be traced to far lower Reynolds numbers than permitted by theory. For increasing inertia, the flow undergoes a transformation to a wall mode composed of inclined near-wall streaks and shear layers. This mode persists to what is known as the "maximum drag reduction limit," and overall EIT is found to dominate viscoelastic flows across more than three orders of magnitude in Reynolds number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...