Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 419: 269-277, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28237394

RESUMO

The developmental program of the heart requires accurate regulation to ensure continuous circulation and simultaneous cardiac morphogenesis, because any functional abnormalities may progress to congenital heart malformation. Notably, energy metabolism in fetal ventricular cells is regulated in a manner that differs from adult ventricular cells: fetal cardiomyocytes generally have immature mitochondria and fetal ventricular cells show greater dependence on glycolytic ATP production. However, although various characteristics of energy metabolism in fetal ventricular cells have been reported, to our knowledge, a quantitative description of the contributions of these factors to fetal ventricular cell functions has not yet been established. Here, we constructed a mathematical model to integrate various characteristics of fetal ventricular cells and predicted the contribution of each characteristic to the maintenance of intracellular ATP concentration and sarcomere contraction under anoxic conditions. Our simulation results demonstrated that higher glycogen content, higher hexokinase activity, and lower creatine concentration helped prolong the time for which ventricular cell contraction was maintained under anoxic conditions. The integrated model also enabled us to quantitatively assess the contributions of factors related to energy metabolism in ventricular cells. Because fetal cardiomyocytes exhibit similar energy metabolic profiles to stem cell-derived cardiomyocytes and those in the failing heart, an improved understanding of these fetal ventricular cells will contribute to a better comprehension of the processes in stem cell-derived cardiomyocytes or under pathological conditions.


Assuntos
Trifosfato de Adenosina/biossíntese , Glicólise , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Potenciais de Ação , Animais , Simulação por Computador , Metabolismo Energético , Coração Fetal/citologia , Coração Fetal/metabolismo , Coração Fetal/fisiologia , Hipóxia Fetal , Glicogênio/metabolismo , Cobaias , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Hexoquinase/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Sarcômeros/metabolismo
2.
J Physiol Sci ; 63(5): 355-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23760774

RESUMO

Early embryonic rodent ventricular cells exhibit spontaneous action potential (AP), which disappears in later developmental stages. Here, we used 3 mathematical models-the Kyoto, Ten Tusscher-Panfilov, and Luo-Rudy models-to present an overview of the functional landscape of developmental changes in embryonic ventricular cells. We switched the relative current densities of 9 ionic components in the Kyoto model, and 160 of 512 representative combinations were predicted to result in regular spontaneous APs, in which the quantitative changes in Na(+) current (I Na) and funny current (I f) made large contributions to a wide range of basic cycle lengths. In all three models, the increase in inward rectifier current (I K1) before the disappearance of I f was predicted to result in abnormally high intracellular Ca(2+) concentrations. Thus, we demonstrated that the developmental changes in APs were well represented, as I Na increased before the disappearance of I f, followed by a 10-fold increase in I K1.


Assuntos
Coração/embriologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Simulação por Computador , Desenvolvimento Embrionário/fisiologia , Coração/fisiologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Ratos , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...