Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901788

RESUMO

Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Aderência Bacteriana/genética , Polimerização , Transativadores/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica
2.
Stem Cells Int ; 2021: 5592804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712330

RESUMO

A spheroid is known as a three-dimensional culture model, which better simulates the physiological conditions of stem cells. This study is aimed at identifying genes specifically expressed in spheroid-cultured human periodontal ligament mesenchymal stem cells (hPDLMSCs) using RNA-seq analysis to evaluate their functions. Transcriptome analysis was performed using spheroid and monolayer cultures of hPDLMSCs from four patients. Cluster and Gene Ontology analyses revealed that genes involved in cell-cell adhesion as well as the G2/M and G1/S transitions of mitotic cell cycles were strongly expressed in the monolayer culture group. However, genes involved in the negative regulation of cell proliferation, histone deacetylation, and bone morphogenetic protein signaling were strongly expressed in the spheroid culture group. We focused on the transcription factor nuclear receptor subfamily 4 group A member 2 (NR4A2) among the genes that were strongly expressed in the spheroid culture group and analyzed its function. To confirm the results of the transcriptome analysis, we performed real-time polymerase chain reaction and western blotting analyses. Interestingly, we found that the mRNA and protein expressions of NR4A2 were strongly expressed in the spheroid-cultured hPDLMSCs. Under osteogenic differentiation conditions, we used siRNA to knock down NR4A2 in spheroid-cultured hPDLMSCs to verify its role in osteogenesis. We found that NR4A2 knockdown significantly increased the levels of mRNA expression for osteogenesis-related genes alkaline phosphatase (ALP), Osteopontin (OPN), and type 1 collagen (COL1) (Student's paired t-test, p < 0.05). ALP activity was also significantly increased when compared to the negative control group (Student's paired t-test, p < 0.05). Additionally, spheroid-cultured hPDLMSCs transfected with siNR4A2 were cultured for 12 days, resulting in the formation of significantly larger calcified nodules compared to the negative control group (Student's paired t-test, p < 0.05). On the other hand, NR4A2 knockdown in hPDLMSC spheroid did not affect the levels of chondrogenesis and adipogenesis-related genes under chondrogenic and adipogenic conditions. These results suggest that NR4A2 negatively regulates osteogenesis in the spheroid culture of hPDLMSCs.

3.
Biomed Res ; 41(4): 187-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801268

RESUMO

As chondrocytes fail to retain their chondrogenic potential in two-dimensional monolayer cultures, several three-dimensional culture systems have been employed for investigating the physiology and pathophysiology in articular cartilage tissues. In this study, we introduced a polyethylene glycol-coated microfabricated chip that enables spheroid formation from ATDC5 cell line, commonly used as a model for in vitro chondrocyte research. ATDC5 cells cultured in our devices aggregated immediately and generated a single spheroid per well within 24 h. Most cells in spheroids cultured in differentiation medium were viable and the circular shape and smooth surface of the spheroid were maintained up to 14 d in culture. We also detected potent hypoxia conditions, a key factor in chondrogenesis, in whole lesions of ATDC5 spheroids. Expression of chondrogenesis-related genes and type X collagen protein was significantly increased in ATDC5 spheroids grown in differentiation medium, compared with monolayer-cultured ATDC5 cells. We also demonstrated that the differentiation medium-induced Akt protein phosphorylation was upregulated in ATDC5 cells cultured in our spheroid device, suggesting that enhancement of chondrogenic potential in ATDC5 spheroids results from PI3/Akt signaling activation. These results indicated that our spheroid culture system could constitute a high-throughput strategy approach towards elucidating the molecular mechanisms that regulate chondrogenesis.


Assuntos
Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Polietilenoglicóis/farmacologia , Esferoides Celulares/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Materiais Revestidos Biocompatíveis/química , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Expressão Gênica , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Dispositivos Lab-On-A-Chip , Camundongos , Platina/química , Polimetil Metacrilato/química , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
4.
Regen Ther ; 14: 59-71, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31988996

RESUMO

INTRODUCTION: Human periodontal ligament mesenchymal stem cells (hPDLMSCs) have been known that they play important roles in homeostasis and regeneration of periodontal tissues. Additionally, spheroids are superior to monolayer-cultured cells. We investigated the characteristics and potential of periodontal tissue regeneration in co-cultured spheroids of hPDLMSCs and human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. METHODS: Co-cultured spheroids were prepared with cell ratios of hPDLMSCs: HUVECs = 1:1, 1:2, and 2:1, using microwell chips. Real-time polymerase chain reaction (PCR) analysis, Enzyme-Linked Immuno Sorbent Assay (ELISA), and nodule formation assay were performed to examine the properties of co-cultured spheroids. Periodontal tissue defects were prepared in the maxillary first molars of rats and subjected to transplantation assay. RESULTS: The expression levels of stemness markers, vascular endothelial growth factor (VEGF), osteogenesis-related genes were up-regulated in co-cultured spheroids, compared with monolayer and spheroid-cultured hPDLMSCs. The nodule formation was also increased in co-cultured spheroids, compared with monolayer and spheroid cultures of hPDLMSCs. Treatment with co-cultured spheroids enhanced new cementum formation after 4 or 8 weeks of transplantation, although there was no significant difference in the new bone formation between co-cultured spheroids and hPDLMSC spheroids. CONCLUSIONS: We found that co-cultured spheroids enhance the periodontal tissue regeneration. Co-cultured spheroids of hPDLMSCs and HUVECs may be a useful therapy that can induce periodontal tissue regeneration.

5.
Arch Oral Biol ; 66: 77-85, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26921718

RESUMO

OBJECTIVE: P. gingivalis is a gram-negative anaerobic bacterium and a major periodontal pathogen. LPS produced by P. gingivalis promotes osteoclast formation. TECK is a CC chemokine whose expression is increased in gingival epithelial cells exposed to P. gingivalis LPS. In this study, we investigated the effect of TECK in osteoclastogenesis induced by P. gingivalis LPS. DESIGNS: Real time reverse transcriptase polymerase chain reaction (RTPCR) analysis and western blotting were performed to confirm TECK in MG63, human osteoblast cell line and primary murine osteoblasts and CCR9 in RAW 264.7 cells and murine bone marrow macrophages (BMMs) as osteoclast precursors. P. gingivalis LPS-treated BMMs and Raw 264.7 cells were cultured with or without TECK or TECK antibody to examine the effect of TECK on osteoclast formation. Cocultures with murine osteoblasts and bone marrow cells were also treated with or without TECK or TECK antibody. Luciferase assay and western blotting were used to determine whether TECK-CCR9 induced osteoclastogenesis was mediated through NFATc1 or NF-kB signaling. RESULTS: TECK was shown to be expressed by osteoblasts, and its receptor, CCR9, by osteoclast precursors. TECK increased P. gingivalis LPS-induced osteoclast numbers in an in vitro osteoclast formation assay using osteoclast precursors. The enhanced osteoclast formation by TECK was mediated by NFATc1, but not by NF-kB signaling. CONCLUSION: TECK may be a novel regulator of osteoclast formation induced by P. gingivalis LPS in periodontitis.


Assuntos
Quimiocinas CC/farmacologia , Lipopolissacarídeos/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quimiocinas CC/biossíntese , Gengiva/citologia , Gengiva/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoclastos/microbiologia , Osteogênese , Porphyromonas gingivalis/efeitos dos fármacos , Células RAW 264.7 , Receptores CCR/biossíntese , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...