Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(48): 18168-18176, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37971057

RESUMO

The potassium and proton mixed salt of mono-Nb substituted Keggin-type phosphomolybdate, KH3[PMo11NbO40], was isolated in a pure form by reacting Keggin-type phosphomolybdic acid (H3[PMo12O40]) and potassium hexaniobate (K8Nb6O19) in water, followed by freeze-drying. The all protonic form, H4[PMo11NbO40], was isolated via proton exchange with H-resin and subsequent freeze-drying. The most crucial factor to isolate KH3[PMo11NbO40] and H4[PMo11NbO40] in pure forms is the evaporation of water using the freeze-drying method. Using a similar procedure, the potassium salt of the di-Nb substituted compound K5[PMo10Nb2O40] was isolated. H4[PMo11NbO40] exhibited high catalytic activity for oxidizing isobutylaldehyde to methacrolein and moderate catalytic activity for the Wacker-type oxidation of allyl phenyl ether when combined with Pd(OAc)2.

2.
Sci Adv ; 8(25): eabo3093, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731864

RESUMO

Small-pore zeolites are gaining increasing attention owing to their superior catalytic performance. Despite being critical for the catalytic activity and lifetime, postsynthetic tuning of bulk Si/Al ratios of small-pore zeolites has not been achieved with well-preserved crystallinity because of the limited mass transfer of aluminum species through narrow micropores. Here, we demonstrate a postsynthetic approach to tune the composition of small-pore zeolites using a previously unexplored strategy named pore-opening migration process (POMP). Acid treatment assisted by stabilization of the zeolite framework by organic cations in pores is proven to be successful for the removal of Al species from zeolite via POMP. Furthermore, the dealuminated AFX zeolite is treated via defect healing, which yields superior hydrothermal stability against severe steam conditions. Our findings could facilitate industrial applications of small-pore zeolites via aluminum content control and defect healing and could elucidate the structural reconstruction and arrangement processes for inorganic microporous materials.

3.
Sci Rep ; 12(1): 7554, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551198

RESUMO

Transmission electron microscopy (TEM) is an essential method in virology because it allows for direct visualization of virus morphology at a nanometer scale. Negative staining to coat virions with heavy metal ions must be performed before TEM observations to achieve sufficient contrast. Herein, we report that potassium salts of Preyssler-type phosphotungstates (K(15-n)[P5W30O110Mn+], M = Na+, Ca2+, Ce3+, Eu3+, Bi3+, or Y3+) are high-performance negative staining reagents. Additionally, we compare the staining abilities of these salts to those of uranyl acetate and Keggin-type phosphotungstate. The potassium salt of Preyssler-type phosphotungstates has the advantage of not requiring prior neutralization because it is a neutral compound. Moreover, the potassium counter-cation can be protonated by a reaction with H+-resin, allowing easy exchange of protons with other cations by acid-base reaction. Therefore, the counter-cations can be changed. Encapsulated cations can also be exchanged, and clear TEM images were obtained using Preyssler-type compounds with different encapsulated cations. Preyssler-type phosphotungstates may be superior negative staining reagents for observing virus. Polyoxotungstates (tungsten-oxide molecules with diverse molecular structures and properties) are thus promising tools to develop negative staining reagents for TEM observations.


Assuntos
Sais , Vírus , Indicadores e Reagentes , Íons , Microscopia Eletrônica de Transmissão , Coloração Negativa/métodos , Potássio , Coloração e Rotulagem
4.
Phys Chem Chem Phys ; 24(7): 4136-4146, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34647941

RESUMO

Interzeolite conversion, which refers to the synthesis of zeolites using a pre-made zeolite as the starting material, has enabled promising outcomes that could not be easily achieved by the conventional synthesis from a mixture of amorphous aluminum and silicon sources. Understanding the mechanism of interzeolite conversion is of particular interest to exploit this synthesis route for the preparation of tailor-made zeolites as well as the discovery of new structures. It has been assumed that the structural similarity between the starting zeolite and the target one is crucial to a successful interzeolite conversion. Nevertheless, an image as to how one type of zeolite evolves into another one remains unclear. In this work, a series of dealuminated FAU zeolites were created through acid leaching and employed as the starting zeolites in the synthesis of AEI zeolite under various conditions. This experimental design allowed us to create a comprehensive diagram of the interzeolite conversion from FAU to AEI as well as to figure out the key factors that enable this kinetically favourable crystallization pathway. Our results revealed different scenarios of the interzeolite conversion from FAU to AEI and pinpointed the importance of the structure of the starting FAU in determining the synthesis outcomes. A prior dealumination was proven effective to modify the structure of the initial FAU zeolite and consequently facilitate its conversion to the AEI zeolite. In addition, this strategy allowed us to directly transfer the knowledge obtained from the interzeolite conversion to a successful synthesis of the AEI zeolite from dealuminated amorphous aluminosilicate precursors. These results offer new insights to the design and fabrication of zeolites via the interzeolite conversion as well as to the understandings of the crystallization mechanisms.

5.
Chem Sci ; 12(22): 7677-7695, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34168820

RESUMO

Zeolites have been successfully employed in many catalytic reactions of industrial relevance. The severe conditions required in some processes, where high temperatures are frequently combined with the presence of steam, highlight the need of considering the evolution of the catalyst structure during the reaction. This review attempts to summarize the recently developed strategies to improve the hydrothermal framework stability of zeolites.

6.
RSC Adv ; 11(37): 23082-23089, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480439

RESUMO

During AEI zeolite synthesis using acid treated FAU (AcT-FAU), we found the recrystallization of high-silica FAU with high crystallinity and Si/Al ratio of 6.1 using N,N-dimethyl-3,5-dimethylpiperidinium hydroxide (DMDMPOH) after 2 h, followed by the crystallization of AEI via FAU-to-AEI interzeolite conversion at a longer synthesis time. In order to understand the formation mechanism of high-silica FAU and generalize its direct synthesis, we have investigated this synthesis process. An analysis of the short-range structure of AcT-FAU revealed that it has an ordered aluminosilicate structure having a large fraction of 4-rings despite its low crystallinity. The changes in the composition of the products obtained at different synthesis times suggested that DMDMP+ plays a certain role in the stabilization of the FAU zeolite framework. Moreover, the results of thermogravimetric analysis showed that the thermal stability of DMDMP+ changed with the zeolite conversion. To the best of our knowledge, this is the first study to clarify the structure-directing effect of DMDMP+ on FAU zeolite formation.

7.
Dalton Trans ; 49(29): 9972-9982, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32484170

RESUMO

A chabazite (CHA zeolite) was synthesized using high-silica faujasite (FAU) zeolites with a Si/Al ratio of 93, an additional alumina source (aluminum hydroxide) combined with seed crystals, and N,N,N-trimethyl-1-adamantammonium hydroxide. We compared the crystallization behavior of the starting material (HSY + Al) with that of other combinations of silica/alumina sources (high-silica and low-silica FAU, fumed silica, and aluminum hydroxide). HSY + Al rapidly yielded nanosized CHA zeolites with a crystal size of approximately 70 nm, exhibited high product crystallinity and high yield and offered a wide synthesis window. A combination of analytic experiments using electrospray-ionization mass spectrometry and nuclear magnetic resonance (NMR) suggested that in the early stage, the pre-introduced CHA seeds provide a crystal nucleus and the FAU zeolites decompose to form oligomer species in the liquid phase. Meanwhile, aluminum hydroxide retains its solid phase. Subsequent crystallization of the zeolites is accelerated by the liquid silicate oligomer and solid aluminate sources, resulting in a high yield and rapid synthesis of nanosized CHA zeolites. We observed that phosphorus-modified CHA zeolites synthesized using HSY + Al perform well as a catalyst for ethanol conversion reactions. Controlled Si/Al ratios and additional phosphorus modifications improve catalytic durability, thereby exhibiting a higher propylene yield from the reaction within the zeolite pore system.

8.
Chem Sci ; 10(27): 6604-6611, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31367311

RESUMO

Although iron oxides have been extensively studied as photocatalysts because of their abundance and environmental compatibility, their performance is notoriously low due to factors such as low photoinduced charge-separation efficiency. Iron oxides, thus, must be modified with expensive and/or toxic materials to attain higher performances, which devalues their appeal as sustainable materials. Here, we design an iron oxide exhibiting an unprecedentedly high photocatalytic performance unrealized by previous photocatalysts such as TiO2 for reactions including the selective oxidation of cyclohexane to industrial nylon precursors. The iron oxide photocatalyst consists of ferric dimers, otherwise extremely unstable, formed via etching of Fe and O sites from ferric oxide nanoparticles immobilized within porous silica. We demonstrate a remarkably high photoinduced charge-separation efficiency (long lifetime of active species) of the ferric dimers due to their electronic structure and the potential of this supported photocatalyst for many more reactions.

9.
J Nanosci Nanotechnol ; 18(1): 11-19, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768805

RESUMO

An isomorphously substituted Al-free Fe-BEA zeolite with extremely high Fe content (~7 wt.%) was synthesized by a facile and industrially friendly method using an excess amount of NaOH. The obtained Fe-BEA zeolite was highly crystalline and showed a well-facetted bipyramidal morphology, similarly to beta zeolites synthesized in a fluoride medium. The chemical states of Fe in the above zeolite were investigated by diffuse reflectance ultraviolet-visible (UV-Vis) absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. The observed chemical states were similar to those of the Fe-BEA zeolite synthesized in the presence of fluoride (Fe-BEA-F). Considering the fact that more than 88% of the micropore volume of the calcined Fe-BEA zeolite was retained after hydrothermal treatment at 1000 °C for 5 h, and 53% of the tetrahedrally coordinated Fe3+ was retained after hydrothermal treatment at 700 °C for 20 h, the obtained Fe-BEA zeolite was concluded to be highly hydrothermally stable. The synthesized zeolite was evaluated in the selective catalytic reduction of NOx by ammonia (NH3-SCR), exhibiting greater catalytic activity than Fe-BEA-F throughout the reaction temperature range. Moreover, the potential of this catalyst as a hydrocarbon adsorbent for cold-start emission control was characterized by dynamic adsorption-desorption of toluene. Interestingly, only 66% of adsorbed toluene was desorbed from the Fe-BEA zeolite (cf. 96% for commercial beta zeolite), even though the gas stream did not contain oxygen, suggesting that hydrocarbon oxidation involved oxygen stored inside the Fe-BEA zeolite.

10.
ACS Omega ; 3(2): 2363-2373, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458534

RESUMO

A mono-potassium cation-encapsulated Preyssler-type phosphotungstate, [P5W30O110K]14- (1), was prepared as a potassium salt, K14[P5W30O110K] (1a), by heating mono-bismuth- or mono-calcium-encapsulated Preyssler-type phosphotungstates (K12[P5W30O110Bi(H2O)] or K13[P5W30O110Ca(H2O)]) in acetate buffer. Characterization of the potassium salt 1a by single-crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectroscopy, and elemental analysis revealed that one potassium cation is encapsulated in the central cavity of the Preyssler-type phosphotungstate molecule with a formal D 5h symmetry. Density functional theory calculations have confirmed that the potassium cation prefers the central position of the cavity over a side position, in which no water molecules are coordinated to the encapsulated potassium cation. 31P NMR and cyclic voltammetry analyses revealed the rapid protonation-deprotonation of the oxygens in the cavity compared to that of other Preyssler-type compounds. Heating of 1a in the solid state afforded a di-K+-encapsulated compound, K13[P5W30O110K2] (2a), indicating that a potassium counter-cation is introduced in one of the side cavities, concomitantly displacing the internal potassium ion from the center to a second side cavity, thus providing a new method to encapsulate an additional cation in Preyssler compounds.

11.
Dalton Trans ; 46(23): 7441-7450, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28561091

RESUMO

Crystalline layered silicates are promising materials for the rational design of innovative catalysts owing to their wide variety and easily tunable surfaces. However, diffusional limitation in their interlayer spaces limits their catalytic efficiency. Herein, we have developed a novel synthesis route to a highly active layered silicate catalyst utilizing Hiroshima University Silicates (HUSs). We attempted to tune the stacking structure of the silicate layers of HUS-2 and HUS-7 ion-exchanged with hexadecyltrimethylammonium (C16TMA) using organic-solvent treatment, and found that cyclohexane treatment of HUS-7 gave an aggregate of randomly restacked silicate nanosheets without degradation of the original silicate framework. We prepared amine-modified base catalysts by grafting with aminopropyltriethoxysilane, and investigated their catalytic performances in the transesterification of triacetin with methanol. The catalyst based on HUS-7 exhibited a much higher catalytic activity than that based on HUS-2 despite their similar framework topology. Moreover, the activity of the HUS-7-based catalyst was far superior to those of other base catalysts, such as amine-modified mesoporous silica, catalyst resin, and alkylamine. Detailed characterization of the catalysts revealed that the improved accessibility of reactant molecules to the immobilized functional units, which is derived from both the randomly stacked silicate layers and the bulky interlayer molecules incorporated, is the primary reason for the high catalytic efficiency of the layered silicate catalyst.

12.
Inorg Chem ; 56(4): 2042-2049, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28182416

RESUMO

We describe the preparation of ε-Keggin-type cobaltomolybdate-based 3D frameworks with sodium cations, NaH9[ε-CoIIMoV8MoVI4O40CoII2], and their characterization by high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy. Atomic-scale HAADF-STEM images of ε-Keggin compounds were obtained for the first time, and positions of Mo and Co were confirmed. Furthermore, clear evidence of the presence of a CoO4 tetrahedron was obtained by X-ray absorption near-edge structure (XANES) analysis. Their characterization clearly revealed that ε-Keggin-type cobaltomolybdate units, [ε-CoMo12O40]n-, constructed by a central CoIIO4 tetrahedron and 12 surrounding MoO6 octahedra, are linked with CoII to form 3D frameworks.

13.
Inorg Chem ; 55(21): 11583-11592, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27775333

RESUMO

Dipotassium cation (K+)-encapsulated Preyssler-type phosphotungstate, [P5W30O110K2]13-, was prepared by heating monobismuth (Bi3+)-encapsulated Preyssler-type phosphotungstate, [P5W30O110Bi(H2O)]12-, in acetate buffer in the presence of an excess amount of potassium cations. Characterization of the isolated potassium salt, K13[P5W30O110K2] (1a), and its acid form, H13[P5W30O110K2] (1b), by single crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV), high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS), and elemental analysis revealed that two potassium cations are encapsulated in the Preyssler-type phosphotungstate molecule with formal D5h symmetry, which is the first example of a Preyssler-type compound with two encapsulated cations. Incorporation of two potassium cations enhances the thermal stability of the potassium salt, and the acid form shows catalytic activity for hydration of ethyl acetate. Packing of the Preyssler-type molecules was observed by high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).

14.
Angew Chem Int Ed Engl ; 55(11): 3600-5, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26891152

RESUMO

Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective.

15.
Dalton Trans ; 45(9): 3715-26, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26672976

RESUMO

Both the α1- and the α2-isomers of mono-ruthenium (Ru)-substituted Dawson-type phosphotungstates with terminal aqua ligands, [α1-P2W17O61Ru(III)(H2O)](7-) (α1-RuH2O) and [α2-P2W17O61Ru(III)(H2O)](7-) (α2-RuH2O), were prepared in pure form by cleavage of the Ru-S bond of the corresponding DMSO derivatives, [α1-P2W17O61Ru(DMSO)](8-) (α1-RuDMSO) and [α2-P2W17O61Ru(DMSO)](8-) (α2-RuDMSO), respectively. Redox studies indicated that α1-RuH2O and α2-RuH2O show proton-coupled electron transfer (PCET), and the Ru(III)(H2O) species was reversibly reduced to Ru(II)(H2O) species and oxidized to Ru(IV)([double bond, length as m-dash]O) species and further to Ru(V)([double bond, length as m-dash]O) species in aqueous solution depending on the pH. Their redox potentials and thermal stabilities were compared with those of the corresponding α-Keggin-type derivatives ([α-XW11O39Ru(H2O)](n-); X = Si(4+) (n = 5), Ge(4+) (n = 5), or P(5+) (n = 4)). The basic electronic and redox features of Ru(L)-substituted Keggin- and Dawson-type heteropolytungstates (with L = H2O or O(2-)) were analyzed by means of density functional calculations. Similar to the corresponding α-Keggin-type derivatives, both α1-RuH2O and α2-RuH2O show catalytic activity for water oxidation.

16.
ACS Appl Mater Interfaces ; 7(43): 24360-9, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26479449

RESUMO

The attractive properties of zeolites, which make them suitable for numerous applications for the energy and chemical industries and for life sciences, are derived from their crystalline framework structures. Herein, we describe the rational synthesis of a microporous material, HUS-10, utilizing a layered silicate precursor, HUS-2, as a structural building unit. For the ordered micropores to be formed, interlayer pillars that supported the original silicate layer of HUS-2 were immobilized through the interlayer silylation of silanol groups with trichloromethylsilane and a subsequent dehydration-condensation reaction of the hydroxyl groups on the preintroduced tetrahedral units. An actual molecular sieving ability, enabling the adsorption of molecules smaller than ethane, was confirmed in the ordered micropores of HUS-10. The hydrophilic adsorption could also be controlled by changing the number of methyl and hydroxyl groups in the immobilized interlayer pillars. In addition, when the adsorption behaviors of CO2, CH4, and N2 on HUS-10 were compared to those on siliceous MFI and CDO zeolites with approximately the same pore diameter, the CO2 adsorption capacity of HUS-10 was comparable. Conversely, because of the adsorption inhibition of CH4 and N2, HUS-10 exhibited larger CO2/CH4 and CO2/N2 adsorption ratios relative to those of MFI and CDO zeolites. These results reveal that the unique microporous framework structure presented by the rational structural design using the layered silicate precursor HUS-2 has the potential to separate CO2 from gas mixtures.

17.
J Nanosci Nanotechnol ; 14(3): 2135-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24745207

RESUMO

This review article describes the synthesis, modification, and function of lepidocrocite-type layered titanate (A(x)Ti(2-y)M(y)O4, A: A, interlayer cation; M, metal or vacancy). Due to the compositional variation, which affects cation exchange, semiconducting and swelling properties, lepidocrocite-type layered titanates have attracted increasing attention in solid-state materials chemistry. The immobilization of functional units has been done to improve the properties as well as to impart additional functions. Here, we highlight recent developments of hybrid materials derived from the intercalation of inorganic and organic cations, organic functional groups, and nanoparticles into lepidocrocite-type layered titanates.


Assuntos
Portadores de Fármacos/química , Titânio/química , Adsorção , Catálise , Cátions , Compostos Férricos/química , Teste de Materiais , Nanopartículas/química , Compostos Orgânicos/química , Fotoquímica/métodos , Propriedades de Superfície
18.
ACS Appl Mater Interfaces ; 6(7): 4616-21, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24617730

RESUMO

We succeeded in the immobilization of Ti(IV) acetylacetonate onto interlayer surfaces of a layered silicate HUS-2 (Hiroshima University Silicate-2, Si20O40(OH)4·4[C5H14NO]) and investigated the photocatalytic acitivity of Ti-incorporated HUS-2 toward the partial oxidation of cyclohexane to cyclohexanol and cyclohexanone under solar light irradiation. XRD, SEM/EDX, (13)C CP and (29)Si MAS NMR and UV-vis measurements of Ti-incorporated HUS-2 confirmed that the isolated tetrahedral Ti species were homogeneously immobilized onto silicate sheets via Si-O-Ti covalent bond and acetylacetonate ligands were removed after calcination. Ti-incorporated HUS-2 showed ca. 100% selectivity for partial cyclohexane oxidation and considerably higher yields (cyclohexanol and cyclohexanone) than TS-1, a typical Ti-containing zeolite. Higher yields were obtained when the calcined Ti-incorporated HUS-2 with a larger amount of the grafted Ti were used.

19.
Inorg Chem ; 53(7): 3526-39, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24611493

RESUMO

Both α1- and α2-isomers of mono-Ru-substituted Dawson-type heteropolytungstates with a DMSO ligand, [α1-P2W17O61Ru(II)(DMSO)](8-) and [α2-P2W17O61Ru(II)(DMSO)](8-), are prepared from the α2-isomer of a monolacunary derivative, [α2-P2W17O61](10-). Reaction of [α2-P2W17O61](10-) with Ru(DMSO)4Cl2 under hydrothermal conditions produces [α2-P2W17O61Ru(II)(DMSO)](8-) as a main product together with [α1-P2W17O61Ru(II)(DMSO)](8-), [PW11O39Ru(II)(DMSO)](5-), and [P2W18O62](6-) as byproducts. By addition of KCl to the reaction mixture, K8[α2-P2W17O61Ru(II)(DMSO)] is isolated in a moderate yield. On the other hand, reaction of [α2-P2W17O61](10-) with Ru2(benzene)2Cl4 under hydrothermal conditions produces an isomeric mixture of [P2W17O61Ru(III)(H2O)](7-) (α1-isomer/α2-isomer ratio: ca. 8/1) as a main product together with [PW11O39Ru(III)(H2O)](4-) and [P2W18O62](6-) as byproducts. By addition of acetone to the reaction mixture, K7[P2W17O61Ru(III)(H2O)] is isolated in a good yield. Reaction of [P2W17O61Ru(III)(H2O)](7-) with DMSO produces [α1-P2W17O61Ru(III)(DMSO)](7-) as a main product and [α2-P2W17O61Ru(III)(DMSO)](7-) as a minor product. By addition of KCl and acetone, the α1-isomer K8[α1-P2W17O61Ru(II)(DMSO)] is isolated in a good yield. Both compounds are fully analyzed by CV, NMR ((1)H, (13)C, (31)P, and (183)W), IR, UV-vis, elemental analysis, mass spectroscopy, and single-crystal structure analysis. Assuming that isomerization does not occur during the reaction of [P2W17O61Ru(III)(H2O)](7-) with DMSO, the isolated [P2W17O61Ru(III)(H2O)](7-) contains the α1-isomer as a main compound with the α2-isomer as a minor compound. Unusual transformation of the α2-isomer of [P2W17O61](10-) to the α1-isomer occurs. Redox behaviors of [α1-P2W17O61Ru(II)(DMSO)](8-) and [α2-P2W17O61Ru(II)(DMSO)](8-) are compared together with Ru(DMSO)-substituted α-Keggin-type heteropolytungstates, [α-XW11O39Ru(DMSO)](n-) (X = Si, Ge, and P).

20.
J Am Chem Soc ; 135(32): 11784-6, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23902420

RESUMO

When the partial oxidation of benzene to phenol, which is one of the most important reactions in chemical industry, was conducted using TiO2 in the presence of a phenol-philic adsorbent derived from a layered silicate, phenol was recovered in unprecedentedly high yield and purity. This resulted from the fact that the adsorbent captured the generated phenol promptly, selectively, and effectively to prevent the overoxidation, after which the captured phenol could be easily eluted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...