Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 531: 693-704, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077129

RESUMO

HYPOTHESIS: Adsorption of high molar mass polymers impacts flow in porous media. In the industrially crucial case of acrylamide-based polymers in porous silicates, the very occurrence of adsorption is still debated. Thus, the present work aimed at establishing a clear correlation between adsorption of acrylamide-based polymers and injectivity loss in porous silica. EXPERIMENTS: A review of the literature revealed apparent discrepancies regarding the affinity of acrylamide-based polymers for siliceous materials having ostensibly the same chemical composition. Through a deeper analysis of the reported literature and new experimental measurements on well-defined polymers and surfaces, we investigated the relation between the silica surface properties and the acrylamide-based polymer adsorption. Our observations were confronted with water injection experiments in porous media of different surface compositions previously put in contact with polymers. FINDINGS: The polymer affinity towards the silica surface depended on the density of hydroxyl groups at the surface of the oxide, its thermal treatment, storage condition and purity. This demonstrated that the impact of adsorption on acrylamide-based polymer flow within porous silicates heavily depends on the silicate surface composition and must be carefully evaluated. In view of the continually expanding use of acrylamide-based polymers, notably in enhanced oil recovery, such considerations provide interesting insights into the effect of adsorption on their flow into porous materials.

2.
Chem Commun (Camb) ; 51(2): 402-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25407013

RESUMO

A new electrochemical label has been developed, which is made up of silver nanoparticles (AgNPs) coated with a mixture of zwitterionic and biotinylated zwitterionic polymers. These polymers improve colloidal stability in physiological medium and ensure biorecognition while direct electrochemical oxidation of silver nanoparticles strongly enhances the detection signal. The resulting hybrid nanomaterials are used as labels in the electrochemical sensing of avidin using sandwich assays elaborated using the biotin-avidin biorecognition system.


Assuntos
Avidina/análise , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Biotina/química , Técnicas Eletroquímicas/métodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...