Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 7(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36136615

RESUMO

In recent decades, we have seen the emergence and re-emergence of many arthropod-transmitted viruses (arboviruses) that pose important public health challenges worldwide [...].

2.
Insect Biochem Mol Biol ; 146: 103797, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640811

RESUMO

The haematophagy process by arthropods has been one of the main targets of studies in the parasite-host interaction, and the kissing-bug Rhodnius prolixus, vector of the protozoan Trypanosoma cruzi, has been one of the main models for such studies. Still in the 1980s, it was identified that among the salivary proteins for disrupting vertebrate host homeostasis, lipocalins were among the most relevant proteins for this process. Since then, 30 lipocalins have been identified in the salivary glands of R. prolixus, that promotes vasodilatation, prevents inflammation, act as anticoagulants and inhibits platelet aggregation. The present work aims to identify new lipocalins from R. prolixus, combining transcriptome and genome data. Identified new genes were mapped and had their structure annotated. To infer an evolutionary relationship between lipocalins, and to support the predicted functions for each lipocalin, all amino acid sequences were used to construct phylogenetic trees. We identified a total of 29 new lipocalins, 3 new bioaminogenic-biding proteins (which act to inhibit platelet aggregation and vasodilation), 9 new inhibitors of platelet aggregation, 7 new apolipoproteins and 10 lipocalins with no putative function. In addition, we observed that several of the lipocalins are also expressed in different R. prolxius tissues, including gut, central nervous system, antennae, and reproductive organs. In addition to newly identified lipocalins and a mapping the new and old lipocalins in the genome of R. prolixus, our study also carried out a review on functional status and nomenclature of some of the already identified lipocalins. Our study reinforces that we are far from understanding the role of lipocalins in the physiology of R. prolixus, and that studies of this family are still of great relevance.


Assuntos
Doença de Chagas , Rhodnius , Animais , Insetos Vetores/genética , Lipocalinas/genética , Filogenia , Rhodnius/química , Rhodnius/genética
3.
Insect Biochem Mol Biol ; 143: 103739, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149206

RESUMO

Triatoma infestans is one of the most important vectors of Trypanosoma cruzi in the Americas. While feeding, they release large amounts of saliva that will counteract the host's responses triggered at the bite site. Despite the various activities described on T. infestans saliva, little is known about its effect on the modulation of the host's immune system. This work aimed to describe the effects of T. infestans saliva on cells of the mouse immune system and access the role in hematophagy. The effect of saliva or salivary gland extract (SGE) was evaluated in vivo and in vitro by direct T. infestans feeding on mice or using different biological assays. Mice that were submitted to four bites by three specimens of T. infestans had their anti-saliva IgG serum levels approximately 2.4 times higher than controls, but no change in serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α levels was observed. No macroscopic alterations were seen at the bite site, but an accumulation of mononuclear and polymorphonuclear cells shortly after the bite and 24 h later were observed in histological cuts. At low concentrations (up to ∼5 µg/well), SGE induced TNF-α production by macrophages and spleen cells, IFN-γ and IL-10 by spleen cells and NO by macrophages. However, at higher concentrations (10 and 20 µg/well), viability of macrophages and spleen cells was reduced by SGE, reducing the production of NO and cytokines (except TNF-α). The salivary trialysin was the main inducer of cell death as macrophage viability and NO production was restored in assays carried out with SGE from trialysin knockdown insects. The reduction of the salivary trialysin by RNAi affected the total ingestion rate, the weight gain, and retarded the molt from second to the fifth instar of T. infestans nymphs fed on mice. The results show that T. infestans saliva modulates the activity of cells of the host immune system and trialysin is an important salivary molecule that reduces host cells viability and impacts the feeding performance of T. infestans feeding on live hosts.


Assuntos
Triatoma , Trypanosoma cruzi , Animais , Sistema Imunitário , Camundongos , Saliva , Proteínas e Peptídeos Salivares/farmacologia
4.
Ticks Tick Borne Dis ; 12(1): 101562, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011439

RESUMO

The active locomotion of ticks is directly associated with the epidemiology of tick-borne diseases, as it has important implications for the interaction of ticks with their hosts and their dispersion in the environment. In an attempt to elucidate the factors involved in the dispersion of Amblyomma sculptum, the present work aimed to characterize different aspects of the active locomotion of A. sculptum nymphs under laboratory conditions. To this end, nymphs were placed on a string at a 70° inclination and their walking activity was recorded daily along with their survival period. During their lifetime, ticks walked an average of 110 m. Their locomotion was not in a straight line and nymphs changed direction 142 times throughout their lifetimes. The mean distance walked per experimental day was 1.8 m, while the average walking distance before changing direction was 52 cm. The distance walked per experimental day reduced over time. The survival of ticks was affected by walking; resting nymphs survived for over 6 months, while the survival of those that walked daily was reduced to approximately 62 days. The results showed that A. sculptum nymphs were able to cover distances of over 100 m throughout their lifetimes, but they walked short distances at a time and constantly changed direction. This behavior indicates that ticks are not able to disperse over long distances by means of active locomotion.


Assuntos
Amblyomma/fisiologia , Amblyomma/crescimento & desenvolvimento , Animais , Locomoção , Longevidade , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
5.
Front Immunol ; 11: 611104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633731

RESUMO

Amblyomma sculptum is the main tick associated with human bites in Brazil and the main vector of Rickettsia rickettsii, the causative agent of the most severe form of Brazilian spotted fever. Molecules produced in the salivary glands are directly related to feeding success and vector competence. In the present study, we identified sequences of A. sculptum salivary proteins that may be involved in hematophagy and selected three proteins that underwent functional characterization and evaluation as vaccine antigens. Among the three proteins selected, one contained a Kunitz_bovine pancreatic trypsin inhibitor domain (named AsKunitz) and the other two belonged to the 8.9 kDa and basic tail families of tick salivary proteins (named As8.9kDa and AsBasicTail). Expression of the messenger RNA (mRNA) encoding all three proteins was detected in the larvae, nymphs, and females at basal levels in unfed ticks and the expression levels increased after the start of feeding. Recombinant proteins rAs8.9kDa and rAsBasicTail inhibited the enzymatic activity of factor Xa, thrombin, and trypsin, whereas rAsKunitz inhibited only thrombin activity. All three recombinant proteins inhibited the hemolysis of both the classical and alternative pathways; this is the first description of tick members of the Kunitz and 8.9kDa families being inhibitors of the classical complement pathway. Mice immunization with recombinant proteins caused efficacies against A. sculptum females from 59.4% with rAsBasicTail immunization to more than 85% by immunization with rAsKunitz and rAs8.9kDa. The mortality of nymphs fed on immunized mice reached 70-100%. Therefore, all three proteins are potential antigens with the possibility of becoming a new tool in the control of A. sculptum.


Assuntos
Amblyomma/imunologia , Proteínas de Artrópodes/administração & dosagem , Saliva/imunologia , Infestações por Carrapato/prevenção & controle , Vacinas/administração & dosagem , Amblyomma/genética , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Imunização , Camundongos , Contagem de Ovos de Parasitas , Infestações por Carrapato/imunologia , Infestações por Carrapato/parasitologia , Vacinas/genética , Vacinas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
Sci Rep ; 9(1): 6764, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043627

RESUMO

Ornithodoros rostratus is a South American argasid tick which importance relies on its itchy bite and potential as disease vector. They feed on a wide variety of hosts and secrete different molecules in their saliva and intestinal content that counteract host defences and help to accommodate and metabolize the relatively large quantity of blood upon feeding. The present work describes the transcriptome profile of salivary gland (SG) and midgut (MG) of O. rostratus using Illumina sequencing. A total of 8,031 contigs were assembled and assigned to different functional classes. Secreted proteins were the most abundant in the SG and accounted for ~67% of all expressed transcripts with contigs with identity to lipocalins and acid tail proteins being the most representative. On the other hand, immunity genes were upregulated in MG with a predominance of defensins and lysozymes. Only 10 transcripts in SG and 8 in MG represented ~30% of all RNA expressed in each tissue and one single contig (the acid tail protein ORN-9707) represented ~7% of all expressed contigs in SG. Results highlight the functional difference of each organ and identified the most expressed classes and contigs of O. rostratus SG and MG.


Assuntos
Proteínas de Artrópodes/metabolismo , Ornithodoros/metabolismo , Proteoma/análise , RNA-Seq/métodos , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Transcriptoma , Animais , Proteínas de Artrópodes/genética , Biologia Computacional , Evolução Molecular , Ornithodoros/genética , Ornithodoros/crescimento & desenvolvimento , Filogenia , Proteínas e Peptídeos Salivares/genética
7.
J Wildl Dis ; 55(2): 462-466, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30475659

RESUMO

Philornis is a neotropical genus of muscid fly that interacts with birds and may affect the development and survival of the birds' offspring. Although Philornis is a relatively common parasite, there is a lack of information about Philornis hosts in several parts of the Americas. In this study, two nests of the Rufousfronted Thornbird ( Phacellodomus rufifrons) were collected in Pedro Leopoldo, southeast Brazil. The first contained four nestlings of advanced age (about 20 d old) and a recently emerged Philornis torquans female adult fly. The second nest contained three nestlings (less than 7 d old) and several Philornis torquans subcutaneous larvae. One of the nestlings was infested by 53 larvae, which had attacked several parts of its body and caused individual wounds containing 1 to more than 15 larvae. The length of the larvae ranged from 3 to 18 mm and only one was a second instar; the remaining 69 were third instars. The pupal period lasted 9-13 d. In total, 71 larvae were collected from the nest, with nestling parasitism varying from 7 to 53 larvae (mean- 23.7±25.5 larvae/nestling).


Assuntos
Doenças das Aves/parasitologia , Aves/parasitologia , Dípteros/classificação , Miíase/veterinária , Envelhecimento , Animais , Doenças das Aves/epidemiologia , Brasil/epidemiologia , Larva , Miíase/epidemiologia , Miíase/parasitologia , Pupa
8.
Sci Rep ; 7(1): 16036, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167493

RESUMO

Rhodnius prolixus expresses nitric oxide synthase (NOS) in the cytosol of the salivary gland (SG) cells. The NO produced is stored in the SG lumen bound to NO-carrier haemeproteins called nitrophorins (NPs). NPs bind tightly to NO in the acidic SG lumen, but release NO when the pH becomes high, e.g., at the host skin (pH~7.4). NO elicits potent and transient relaxation of vascular smooth muscle. Here, we investigated the role of salivary NO in the R. prolixus feeding behaviour and the salivary vasodilator activity of the host microcirculation. NOS knockdown in R. prolixus changed the SG colour, decreased the number of NO-loaded NPs and caused impairment of feeding performance. When salivary gland extracts (SGEs) were obtained from NOS- and NPs-knockdown insects and prepared in pH 5.0 solution and injected (i.v.) into mice via the tail vein, no vasodilation was observed, whereas SGEs from control insects caused long-term venodilation in the mouse skin. SGs disrupted directly in PBS (pH 7.4) containing BSA produced long-term vasodilation compared to the controls without BSA due to the possible formation of nitroso-albumin, suggesting that host serum albumin extends the NO half-life when NO is injected into the host skin by triatomine during their blood-feeding.


Assuntos
Óxido Nítrico/metabolismo , Rhodnius/enzimologia , Animais , Hemeproteínas/metabolismo , Interações Hospedeiro-Parasita , Insetos Vetores , Óxido Nítrico Sintase/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
9.
ACS Cent Sci ; 3(9): 1026-1031, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28979944

RESUMO

Secreted and surface-displayed carbohydrates are essential for virulence and viability of many parasites, including for immune system evasion. We have identified the α-Gal trisaccharide epitope on the surface of the protozoan parasites Leishmania infantum and Leishmania amazonensis, the etiological agents of visceral and cutaneous leishmaniasis, respectively, with the latter bearing larger amounts of α-Gal than the former. A polyvalent α-Gal conjugate on the immunogenic Qß virus-like particle was tested as a vaccine against Leishmania infection in a C57BL/6 α-galactosyltransferase knockout mouse model, which mimics human hosts in producing high titers of anti-α-Gal antibodies. As expected, α-Gal-T knockout mice infected with promastigotes of both Leishmania species showed significantly lower parasite load in the liver and slightly decreased levels in the spleen, compared with wild-type mice. Vaccination with Qß-α-Gal nanoparticles protected the knockout mice against Leishmania challenge, eliminating the infection and proliferation of parasites in the liver and spleen as probed by qPCR. The α-Gal epitope may therefore be considered as a vaccine candidate to block human cutaneous and visceral leishmaniasis.

10.
Front Immunol ; 8: 1065, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912782

RESUMO

Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.

11.
Parasit Vectors ; 9(1): 445, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515662

RESUMO

BACKGROUND: Rhipicephalus (Boophilus) microplus is the main ectoparasite affecting livestock worldwide. For a successful parasitism, ticks need to evade several immune responses of their hosts, including the activation of the complement system. In spite of the importance of R. microplus, previous work only identified one salivary molecule that blocks the complement system. The current study describes complement inhibitory activities induced by R. microplus salivary components and mechanisms elicited by putative salivary proteins on both classical and alternative complement pathways. RESULTS: We found that R. microplus saliva from fully- and partially engorged females was able to inhibit both pathways. Saliva acts strongly at the initial steps of both complement activation pathways. In the classical pathway, the saliva blocked C4 cleavage, and hence, deposition of C4b on the activation surface, suggesting that the inhibition occurs at some point between C1q and C4. In the alternative pathway, saliva acts by binding to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and reducing C3b production and deposition as well as cleavage of factor B. Saliva has no effect on formation or decay of the C6 to C8 components of the membrane attack complex. CONCLUSION: The saliva of R. microplus is able to inhibit the early steps of classical and alternative pathways of the complement system. Saliva acts by blocking C4 cleavage and deposition of C4b on the classical pathway activation surface and, in the alternative pathway, saliva bind to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and the production and deposition of additional C3b.


Assuntos
Proteínas Inativadoras do Complemento/metabolismo , Via Alternativa do Complemento/efeitos dos fármacos , Via Clássica do Complemento/efeitos dos fármacos , Rhipicephalus/imunologia , Saliva/metabolismo , Animais , Evasão da Resposta Imune , Tolerância Imunológica
12.
Insect Biochem Mol Biol ; 77: 10-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27491440

RESUMO

Blood-sucking vectors must overcome thermal stress caused by intake of proportionally large amounts of warm blood from their hosts. In response to this, Heat Shock Proteins (HSPs) such as the widely studied HSP70 family (the inducible HSP70 and the cognate form HSC70, known for their role in preserving essential cellular functions) are rapidly up-regulated in their tissues. The triatomine Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causative pathogen of Chagas' disease, and is also a model organism for studying insect biology and physiology. In this work, we observed that the expression of Rhodnius prolixus HSP70 was rapidly up-regulated in response to thermal shocks (0 °C and 40 °C) and also during the first hours after feeding on blood. HSP70/HSC70 RNAi knockdown elicited important alterations in R. prolixus physiological responses triggered by blood meal and starvation. HSP70/HSC70 knockdown insects showed lower resistance to prolonged starvation in comparison to appropriate controls, dying between 32 and 40 days after dsRNA injection. After blood feeding, the physiological effects of HSP70/HSC70 knockdown were more prominent and the insects died even earlier, within 14-20 days after feeding (21-27 days after dsRNA injection). These bugs showed impaired blood processing and digestion, reduced energetic metabolism and the midgut immune responses were compromised. Our findings suggest that HSP70/HSC70 depletion affected R. prolixus in starvation or fed conditions. After feeding, the arrival of blood in the digestive tract of knockdown insects fails to activate essential signaling pathways involved in blood processing, producing several alterations in their physiological processes enough to generate a premature death.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/genética , Imunidade Inata , Proteínas de Insetos/genética , Rhodnius/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Temperatura Baixa/efeitos adversos , DNA Complementar/genética , DNA Complementar/metabolismo , Comportamento Alimentar , Privação de Alimentos , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta/efeitos adversos , Proteínas de Insetos/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhodnius/genética
13.
Exp Parasitol ; 164: 91-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26948715

RESUMO

Inhibition of the complement system during and after haematophagy is of utmost importance for tick success in feeding and tick development. The role of such inhibition is to minimise damage to the intestinal epithelium as well as avoiding inflammation and opsonisation of salivary molecules at the bite site. Despite its importance, the salivary anti-complement activity has been characterised only in species belonging to the Ixodes ricinus complex which saliva is able to inhibit the alternative and lectin pathways. Little is known about this activity in other species of the Ixodidae family. Thus, the aim of this study was to describe the inhibition of the classical pathway of the complement system by the saliva of Amblyomma cajennense at different stages of the haematophagy. The A. cajennense saliva and salivary gland extract (SGE) were able to inhibit the complement classical pathway through haemolytic assays with higher activity observed when saliva was used. The anti-complement activity is present in the salivary glands of starving females and also in females throughout the whole feeding process, with significant higher activity soon after tick detachment. The SGE activity from both females fed on mice or horses had no significant correlation (p > 0.05) with tick body weight. The pH found in the intestinal lumen of A. cajennense was 8.04 ± 0.08 and haemolytic assays performed at pH 8.0 showed activation of the classical pathway similarly to what occurs at pH 7.4. Consequently, inhibition could be necessary to protect the tick enterocytes. Indeed, the inhibition observed by SGE was higher in pH 8.0 in comparison to pH 7.4 reinforcing the role of saliva in protecting the intestinal cells. Further studies should be carried out in order to identify the inhibitor molecule and characterise its inhibition mechanism.


Assuntos
Via Clássica do Complemento/imunologia , Ixodidae/imunologia , Animais , Peso Corporal , Feminino , Hemólise/imunologia , Doenças dos Cavalos/parasitologia , Cavalos , Concentração de Íons de Hidrogênio , Intestinos/química , Ixodidae/anatomia & histologia , Masculino , Camundongos , Saliva/imunologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
14.
Front Physiol ; 5: 276, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140153

RESUMO

The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females) or blood feeders (females only), and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves ß-1,3-glucanases, chitinases, and digestive lysozymes. In this work, the transcripts of digestive ß-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18, and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes.

15.
Parasit Vectors ; 7: 329, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25051919

RESUMO

BACKGROUND: Phlebotomine sand flies transmit the haemoflagellate Leishmania, the causative agent of human leishmaniasis. The Leishmania promastigotes are confined to the gut lumen and are exposed to the gut microbiota within female sand flies. Here we study the colonisation resistance of yeast and bacteria in preventing the establishment of a Leishmania population in sand flies and the ability of Leishmania to provide colonisation resistance towards the insect bacterial pathogen Serratia marcescens that is also pathogenic towards Leishmania. METHODS: We isolated microorganisms from wild-caught and laboratory-reared female Lutzomyia longipalpis, identified as Pseudozyma sp. Asaia sp. and Ochrobactrum intermedium. We fed the females with a sugar meal containing the microorganisms and then subsequently fed them with a bloodmeal containing Leishmania mexicana and recorded the development of the Leishmania population. Further experiments examined the effect of first colonising the sand fly gut with L. mexicana followed by feeding with, Serratia marcescens, an insect bacterial pathogen. The mortality of the flies due to S. marcescens was recorded in the presence and absence of Leishmania. RESULTS: There was a reduction in the number of flies harbouring a Leishmania population that had been pre-fed with Pseudozyma sp. and Asaia sp. or O. intermedium. Experiments in which L. mexicana colonised the sand fly gut prior to being fed an insect bacterial pathogen, Serratia marcescens, showed that the survival of flies with a Leishmania infection was significantly higher compared to flies without Leishmania infection. CONCLUSIONS: The yeast and bacterial colonisation experiments show that the presence of sand fly gut microorganisms reduce the potential for Leishmania to establish within the sand fly vector. Sand flies infected with Leishmania were able to survive an attack by the bacterial pathogen that would have killed the insect and we concluded that Leishmania may benefit its insect host whilst increasing the potential to establish itself in the sand fly vector. We suggest that the increased ability of the sand fly to withstand a bacterial entomopathogen, due to the presence of the Leishmania, may provide an evolutionary pressure for the maintenance of the Leishmania-vector association.


Assuntos
Leishmania/fisiologia , Psychodidae/microbiologia , Psychodidae/parasitologia , Serratia/fisiologia , Animais , Feminino , Interações Hospedeiro-Patógeno
16.
PLoS One ; 7(8): e42531, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880020

RESUMO

Phlebotomine sand flies are vectors of Leishmania that are acquired by the female sand fly during blood feeding on an infected mammal. Leishmania parasites develop exclusively in the gut lumen during their residence in the insect before transmission to a suitable host during the next blood feed. Female phlebotomine sand flies are blood feeding insects but their life style of visiting plants as well as animals, and the propensity for larvae to feed on detritus including animal faeces means that the insect host and parasite are exposed to a range of microorganisms. Thus, the sand fly microbiota may interact with the developing Leishmania population in the gut. The aim of the study was to investigate and identify the bacterial diversity associated with wild adult female Lutzomyia sand flies from different geographical locations in the New World. The bacterial phylotypes recovered from 16S rRNA gene clone libraries obtained from wild caught adult female Lutzomyia sand flies were estimated from direct band sequencing after denaturing gradient gel electrophoresis of bacterial 16 rRNA gene fragments. These results confirm that the Lutzomyia sand flies contain a limited array of bacterial phylotypes across several divisions. Several potential plant-related bacterial sequences were detected including Erwinia sp. and putative Ralstonia sp. from two sand fly species sampled from 3 geographically separated regions in Brazil. Identification of putative human pathogens also demonstrated the potential for sand flies to act as vectors of bacterial pathogens of medical importance in addition to their role in Leishmania transmission.


Assuntos
Bactérias/genética , Psychodidae/microbiologia , Envelhecimento/genética , Animais , Sequência de Bases , Brasil , Eletroforese em Gel de Gradiente Desnaturante , Feminino , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
17.
J Biol Chem ; 287(28): 23995-4003, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22645126

RESUMO

Phlebotomine sand flies are the vectors of medically important Leishmania. The Leishmania protozoa reside in the sand fly gut, but the nature of the immune response to the presence of Leishmania is unknown. Reactive oxygen species (ROS) are a major component of insect innate immune pathways regulating gut-microbe homeostasis. Here we show that the concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens but not after feeding on the Leishmania that uses the sand fly as a vector. Moreover, the Leishmania is sensitive to ROS either by oral administration of ROS to the infected fly or by silencing a gene that expresses a sand fly ROS-scavenging enzyme. Finally, the treatment of sand flies with an exogenous ROS scavenger (uric acid) altered the gut microbial homeostasis, led to an increased commensal gut microbiota, and reduced insect survival after oral infection with S. marcescens. Our study demonstrates a differential response of the sand fly ROS system to gut microbiota, an insect pathogen, and the Leishmania that utilize the sand fly as a vehicle for transmission between mammalian hosts.


Assuntos
Imunidade/imunologia , Leishmania mexicana/imunologia , Psychodidae/imunologia , Espécies Reativas de Oxigênio/imunologia , Serratia marcescens/imunologia , Sequência de Aminoácidos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Catalase/classificação , Catalase/genética , Catalase/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/parasitologia , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Peróxido de Hidrogênio/metabolismo , Imunidade/efeitos dos fármacos , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/imunologia , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Leishmania mexicana/fisiologia , Dados de Sequência Molecular , Peroxirredoxinas/classificação , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Filogenia , Psychodidae/enzimologia , Psychodidae/genética , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Serratia marcescens/fisiologia , Superóxido Dismutase/classificação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Ácido Úrico/administração & dosagem , Ácido Úrico/farmacologia
18.
J Biol Chem ; 287(16): 12985-93, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22375009

RESUMO

Female phlebotomine sand flies Lutzomyia longipalpis naturally harbor populations of the medically important Leishmania infantum (syn. Leishmania chagasi) parasite in the gut, but the extent to which the parasite interacts with the immune system of the insect vector is unknown. To investigate the sand fly immune response and its interaction with the Leishmania parasite, we identified a homologue for caspar, a negative regulator of immune deficiency signaling pathway. We found that feeding antibiotics to adult female L. longipalpis resulted in an up-regulation of caspar expression relative to controls. caspar was differentially expressed when females were fed on gram-negative and gram-positive bacterial species. caspar expression was significantly down-regulated in females between 3 and 6 days after a blood feed containing Leishmania mexicana amastigotes. RNA interference was used to deplete caspar expression in female L. longipalpis, which were subsequently fed with Leishmania in a blood meal. Sand fly gut populations of both L. mexicana and L. infantum were significantly reduced in caspar-depleted females. The prevalence of L. infantum infection in the females fell from 85 to 45%. Our results provide the first insight into the operation of immune homeostasis in phlebotomine sand flies during the growth of bacterial and Leishmania populations in the digestive tract. We have demonstrated that the activation of the sand fly immune system, via depletion of a single gene, can lead to the abortion of Leishmania development and the disruption of transmission by the phlebotomine sand fly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Leishmania infantum/imunologia , Leishmania mexicana/imunologia , Leishmaniose Visceral/imunologia , Psychodidae , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia , Genes de Insetos/imunologia , Imunidade Inata/imunologia , Leishmania infantum/crescimento & desenvolvimento , Leishmania mexicana/crescimento & desenvolvimento , Filogenia , Psychodidae/genética , Psychodidae/imunologia , Psychodidae/parasitologia
19.
PLoS One ; 6(3): e17486, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21408075

RESUMO

The phlebotomine sand fly Lutzomyia longipalpis is the most important vector of American visceral leishmaniasis (AVL), the disseminated and most serious form of the disease in Central and South America. In the natural environment, most female L. longipalpis are thought to survive for less than 10 days and will feed on blood only once or twice during their lifetime. Successful transmission of parasites occurs when a Leishmania-infected female sand fly feeds on a new host. Knowledge of factors affecting sand fly longevity that lead to a reduction in lifespan could result in a decrease in parasite transmission. Catalase has been found to play a major role in survival and fecundity in many insect species. It is a strong antioxidant enzyme that breaks down toxic reactive oxygen species (ROS). Ovarian catalase was found to accumulate in the developing sand fly oocyte from 12 to 48 hours after blood feeding. Catalase expression in ovaries as well as oocyte numbers was found to decrease with age. This reduction was not found in flies when fed on the antioxidant ascorbic acid in the sugar meal, a condition that increased mortality and activation of the prophenoloxidase cascade. RNA interference was used to silence catalase gene expression in female Lu. longipalpis. Depletion of catalase led to a significant increase of mortality and a reduction in the number of developing oocytes produced after blood feeding. These results demonstrate the central role that catalase and ROS play in the longevity and fecundity of phlebotomine sand flies.


Assuntos
Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Psychodidae/enzimologia , Psychodidae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Ácido Ascórbico/farmacologia , Catalase/química , Catalase/genética , Comportamento Alimentar/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Oócitos/enzimologia , Psychodidae/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Alinhamento de Sequência , Análise de Sobrevida
20.
Acta Trop ; 107(3): 230-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18606150

RESUMO

The phlebotomine sand fly Lutzomyia longipalpis takes blood from a variety of wild and domestic animals and transmits Leishmania (Leishmania) infantum chagasi, etiological agent of American visceral leishmaniasis. Blood meal identification in sand flies has depended largely on serological methods but a new protocol described here uses filter-based technology to stabilise and store blood meal DNA, allowing subsequent PCR identification of blood meal sources, as well as parasite detection, in blood-fed sand flies. This technique revealed that 53.6% of field-collected sand flies captured in the back yards of houses in Teresina (Brazil) had fed on chickens. The potential applications of this technique in epidemiological studies and strategic planning for leishmaniasis control programmes are discussed.


Assuntos
Sangue , Comportamento Alimentar , Parasitologia/métodos , Psychodidae , Manejo de Espécimes/métodos , Animais , Animais Domésticos , Animais Selvagens , Brasil , Cricetinae , Feminino , Humanos , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/prevenção & controle , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...