Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(4): e0231713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320412

RESUMO

Deltaic wetlands are highly productive ecosystems, which characteristically can act as C-sinks. However, they are among the most threatened ecosystems, being very vulnerable to global change, and require special attention towards its conservation. Knowing their climate change mitigating potential, conservation measures should also be oriented with a climatic approach, to strengthen their regulatory services. In this work we studied the carbon biogeochemistry and the specific relevance of certain microbial guilds on carbon metabolisms of the three main types of deltaic wetlands located in the Ebro Delta, north-eastern Spain, as well as how they deal with human pressures and climate change effects. We estimated the metabolic rates of the main carbon-related metabolisms (primary production and respiration) and the resulting carbon and global warming potential balances in sites with a different salinity range and trophic status. With the results obtained, we tried to define the influence of possible changes in salinity and trophic level linked to the main impacts currently threatening deltaic wetlands, on the C-metabolisms and GHG emissions, for a better understanding of the mitigating capacity and their possible enhancement when applying specific management actions. Metabolic rates showed a pattern highly influenced by the salinity range and nutrients inputs. Freshwater and brackish wetlands, with higher nutrient inputs from agricultural runoff, showed higher C-capture capacity (around 220-250 g C m-2 y-1), but also higher rates of degradative metabolisms (aerobic respiration and CH4 emissions). Contrastingly, the rates of C-related metabolisms and C-retention of Salicornia-type coastal salt marshes were lower (42 g C m-2 y-1). The study of the microbial metacommunity composition by the16S RNA gene sequencing revealed a significant higher presence of methanogens in the salt marsh, and also higher metabolic potential, where there was significantly more organic matter content in sediment. Salinity inhibition, however, explained the lower respiration rates, both aerobic and anaerobic, and prevented higher rates of methanogenesis despite the major presence of methanogens. Conservation measures for these wetlands would require, overall, maintaining the sediment contributions of the river basin intending to overcome the regression of the Delta and its salt marshes in a climate change scenario. Particularly, for reducing degradative metabolisms, and favour C-retention, nutrient inputs should be controlled in freshwater and brackish wetlands in order to reduce eutrophication. In salt marshes, the reduction of salinity should be avoided to control increases in methanogenesis and CH4 emissions.


Assuntos
Carbono/metabolismo , Chenopodiaceae/metabolismo , Gases de Efeito Estufa/metabolismo , Microbiota/fisiologia , Áreas Alagadas , Agricultura , Dióxido de Carbono , Sequestro de Carbono , Mudança Climática , Metagenoma , Metano/metabolismo , Nutrientes/metabolismo , RNA Ribossômico 16S/genética , Rios , Salinidade , Solo/química , Microbiologia do Solo , Espanha
2.
PLoS One ; 12(8): e0181901, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813428

RESUMO

The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins' faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the soil bacterial community.


Assuntos
Poluentes Ambientais , Oceanos e Mares , Spheniscidae , Animais , Regiões Antárticas , Poluentes Ambientais/química , Metagenoma , Metagenômica/métodos , Compostos Orgânicos/análise , Estações do Ano , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...