Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 954015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246591

RESUMO

Regulation of flowering is a crucial event in the evolutionary history of angiosperms. The production of flowers is regulated through the integration of different environmental and endogenous stimuli, many of which involve the activation of different genes in a hierarchical and complex signaling network. The FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1) gene family is known to regulate important aspects of flowering in plants. To better understand the pivotal events that changed FT and TFL1 functions during the evolution of angiosperms, we reconstructed the ancestral sequences of FT/TFL1-like genes and predicted protein structures through in silico modeling to identify determinant sites that evolved in both proteins and allowed the adaptative diversification in the flowering phenology and developmental processes. In addition, we demonstrate that the occurrence of destabilizing mutations in residues located at the phosphatidylcholine binding sites of FT structure are under positive selection, and some residues of 4th exon are under negative selection, which is compensated by the occurrence of stabilizing mutations in key regions and the P-loop to maintain the overall protein stability. Our results shed light on the evolutionary history of key genes involved in the diversification of angiosperms.

2.
Proteins ; 89(10): 1340-1352, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34075621

RESUMO

Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the ß1-ß2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the ß7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiales/metabolismo , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo , Biocatálise , Hidrólise
3.
Front Chem ; 9: 662688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996755

RESUMO

Natural products are continually explored in the development of new bioactive compounds with industrial applications, attracting the attention of scientific research efforts due to their pharmacophore-like structures, pharmacokinetic properties, and unique chemical space. The systematic search for natural sources to obtain valuable molecules to develop products with commercial value and industrial purposes remains the most challenging task in bioprospecting. Virtual screening strategies have innovated the discovery of novel bioactive molecules assessing in silico large compound libraries, favoring the analysis of their chemical space, pharmacodynamics, and their pharmacokinetic properties, thus leading to the reduction of financial efforts, infrastructure, and time involved in the process of discovering new chemical entities. Herein, we discuss the computational approaches and methods developed to explore the chemo-structural diversity of natural products, focusing on the main paradigms involved in the discovery and screening of bioactive compounds from natural sources, placing particular emphasis on artificial intelligence, cheminformatics methods, and big data analyses.

4.
Sci Rep ; 11(1): 7628, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828175

RESUMO

Cell-penetrating peptides (CPPs) are naturally able to cross the lipid bilayer membrane that protects cells. These peptides share common structural and physicochemical properties and show different pharmaceutical applications, among which drug delivery is the most important. Due to their ability to cross the membranes by pulling high-molecular-weight polar molecules, they are termed Trojan horses. In this study, we proposed a machine learning (ML)-based framework named BChemRF-CPPred (beyond chemical rules-based framework for CPP prediction) that uses an artificial neural network, a support vector machine, and a Gaussian process classifier to differentiate CPPs from non-CPPs, using structure- and sequence-based descriptors extracted from PDB and FASTA formats. The performance of our algorithm was evaluated by tenfold cross-validation and compared with those of previously reported prediction tools using an independent dataset. The BChemRF-CPPred satisfactorily identified CPP-like structures using natural and synthetic modified peptide libraries and also obtained better performance than those of previously reported ML-based algorithms, reaching the independent test accuracy of 90.66% (AUC = 0.9365) for PDB, and an accuracy of 86.5% (AUC = 0.9216) for FASTA input. Moreover, our analyses of the CPP chemical space demonstrated that these peptides break some molecular rules related to the prediction of permeability of therapeutic molecules in cell membranes. This is the first comprehensive analysis to predict synthetic and natural CPP structures and to evaluate their chemical space using an ML-based framework. Our algorithm is freely available for academic use at http://comptools.linc.ufpa.br/BChemRF-CPPred .


Assuntos
Peptídeos Penetradores de Células/química , Biologia Computacional/métodos , Previsões/métodos , Algoritmos , Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos , Aprendizado de Máquina , Modelos Teóricos , Redes Neurais de Computação , Máquina de Vetores de Suporte
5.
J Mol Graph Model ; 101: 107735, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32947107

RESUMO

The shikimate pathway consists of seven enzymatic steps involved in the conversion of erythrose-4-phosphate and phosphoenolpyruvate to chorismate and also responsible to the production of aromatic amino acids, such as phenylalanine, tyrosine, and tryptophan which are essential to the bacterial metabolism. The 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) and 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) catalyze important steps in the shikimate pathway using as substrate the phosphoenolpyruvate (PEP). Due to the importance of PEP in shikimate pathway, its structure has been investigated to develop new bioinspired competitive inhibitors against DAHPS and EPSPS. In the present study, we perform a literature survey of 28 PEP derivatives, then we analyzed the selectivity and affinity of these compounds against the EPSPS and DAHPS structures using consensual molecular docking, pharmacophore prediction, molecular dynamics (MD) simulations, and binding free energy calculations. Here, we propose consistent binding modes of the selected ligands and indicate that their structures show interesting pharmacophoric properties related to multi-targets inhibitors for both enzymes. Our computational results are supported by previous experimental findings related to the interactions of PEP derivatives with DAHPS and EPSPS structures.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase , 3-Fosfoshikimato 1-Carboxiviniltransferase , Simulação de Acoplamento Molecular , Fosfoenolpiruvato , Ácido Chiquímico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...