Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 27(9): 866-885, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33727775

RESUMO

BACKGROUND: 1,3-beta-D-glucan (BG) is a ubiquitous cell wall component of gut micro-organisms. We hypothesized that the serum levels of BG could reflect active intestinal inflammation in patients with inflammatory bowel disease. AIM: To determine whether the serum BG concentrations correlate with intestinal inflammation. METHODS: A prospective observational study was performed in a tertiary referral center, from 2016 to 2019, in which serum BG was determined in 115 patients with Crohn's disease (CD), 51 with ulcerative colitis (UC), and 82 controls using a photometric detection kit. Inflammatory activity was determined by ileocolonoscopy, histopathology, magnetic resonance enterography, and biomarkers, including fecal calprotectin (FC), C-reactive protein, and a panel of cytokines. The ability of BG to detect active vs inactive disease was assessed using the area under the receiver operating characteristic curve. In subgroup analysis, serial BG was used to assess the response to therapeutic interventions. RESULTS: The serum BG levels were higher in CD patients than in controls (P = 0.0001). The BG levels paralleled the endoscopic activity in CD patients and histologic activity and combined endoscopic and histologic activity in both CD and UC patients. The area under the curve (AUC) in receiver operating characteristic analysis to predict endoscopic activity was 0.694 [95% confidence interval (CI): 0.60-0.79; P = 0.001] in CD, and 0.662 (95%CI: 0.51-0.81; P = 0.066) in UC patients. The AUC in receiver operating characteristic analysis to predict histologic activity was 0.860 (95%CI: 0.77-0.95; P < 0.001) in CD, and 0.786 (95%CI: 0.57-0.99; P = 0.015) in UC patients. The cut-off values of BG for both endoscopic and histologic activity were 60 µg/mL in CD, and 40 µg/mL in UC patients. Performance analysis showed that the results based on BG of 40 and 60 µg/mL were more specific for predicting endoscopic activity (71.8% and 87.2% for CD; and 87.5% and 87.5% for UC, respectively) than FC (53.3% and 66.7% for CD; and 20% and 80% for UC, respectively); and also histologic activity (60.5% and 76.3% for CD; and 90.0% and 95.0% for UC, respectively) than FC (41.7% and 50.0% for CD; and 25% and 50% for UC, respectively). Regarding the clinical, endoscopic, and histologic activities, the BG levels were reduced following therapeutic intervention in patients with CD (P < 0.0001) and UC (P = 0.003). Compared with endoscopic (AUC: 0.693; P = 0.002) and histologic (AUC: 0.868; P < 0.001) activity, no significant correlation was found between serum BG and transmural healing based on magnetic resonance enterography (AUC: 0.576; P = 0.192). Positive correlations were detected between BG and IL-17 in the CD (r: 0.737; P = 0.001) and the UC group (r: 0.574; P = 0.005), and between BG and interferon-gamma in the CD group (r: 0.597; P = 0.015). CONCLUSION: Serum BG may represent an important novel noninvasive approach for detecting mucosal inflammation and therapeutically monitoring inflammatory bowel diseases, particularly in CD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , beta-Glucanas , Biomarcadores , Colite Ulcerativa/diagnóstico , Doença de Crohn/diagnóstico , Fezes , Humanos , Complexo Antígeno L1 Leucocitário , Índice de Gravidade de Doença
2.
Purinergic Signal ; 16(4): 561-572, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33090332

RESUMO

Sepsis is a severe disease characterized by an uncontrolled systemic inflammation and consequent organ dysfunction generated in response to an infection. Extracellular ATP acting through the P2X7 receptor induces the maturation and release of pro-inflammatory cytokines (i.e., IL-1ß) and the production of reactive nitrogen and oxygen species that lead to oxidative tissue damage. Here, we investigated the role of the P2X7 receptor in inflammation, oxidative stress, and liver injury in sepsis. Sepsis was induced by cecal ligation and puncture (CLP) in wild-type (WT) and P2X7 knockout (P2X7-/-) mice. The oxidative stress in the liver of septic mice was assessed by 2',7'-dichlorofluorescein oxidation reaction (DCF), thiobarbituric acid-reactive substances (TBARS), and nitrite levels dosage. The status of the endogenous defense system was evaluated through catalase (CAT) and superoxide dismutase (SOD) activities. The inflammation was assessed histologically and by determining the expression of inflammatory cytokines and chemokines by RT-qPCR. We observed an increase in the reactive species and lipid peroxidation in the liver of septic WT mice, but not in the liver from P2X7-/- animals. We found an imbalance SOD/CAT ratio, also only WT septic animals. The number of inflammatory cells and the gene expression of IL-1 ß, IL-6, TNF-α, IL-10, CXCL1, and CXCL2 were higher in the liver of WT septic mice in comparison to P2X7-/- septic animals. In summary, our results suggest that the P2X7 receptor might be a therapeutic target to limit oxidative stress damage and liver injury during sepsis.


Assuntos
Hepatopatias/metabolismo , Estresse Oxidativo/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Sepse/patologia , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
J Hepatol ; 67(4): 716-726, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28554875

RESUMO

BACKGROUND & AIMS: The severity of sepsis can be linked to excessive inflammatory responses resulting in hepatic injury. P2X7 receptor activation by extracellular ATP (eATP) exacerbates inflammation by augmenting cytokine production; while CD39 (ENTPD1) scavenges eATP to generate adenosine, thereby limiting P2X7 activation and resulting in A2A receptor stimulation. We aim to determine how the functional interaction of P2X7 receptor and CD39 control the macrophage response, and consequently impact on sepsis and liver injury. METHODS: Sepsis was induced by cecal ligation and puncture in C57BL/6 wild-type (WT) and CD39-/- mice. Several in vitro assays were performed using peritoneal or bone marrow derived macrophages to determine CD39 ectonucleotidase activity and its role in sepsis-induced liver injury. RESULTS: CD39 expression in macrophages limits ATP-P2X7 receptor pro-inflammatory signaling. P2X7 receptor paradoxically boosts CD39 activity. Inhibition and/or deletion of P2X7 receptor in LPS-primed macrophages attenuates cytokine production and inflammatory signaling as well as preventing ATP-induced increases in CD39 activity. Septic CD39-/- mice exhibit higher levels of inflammatory cytokines and show more pronounced liver injury than WT mice. Pharmacological P2X7 blockade largely prevents tissue damage, cell apoptosis, cytokine production, and the activation of inflammatory signaling pathways in the liver from septic WT, while only attenuating these outcomes in CD39-/- mice. Furthermore, the combination of P2X7 blockade with adenosine A2A receptor stimulation completely inhibits cytokine production, the activation of inflammatory signaling pathways, and protects septic CD39-/- mice against liver injury. CONCLUSIONS: CD39 attenuates sepsis-associated liver injury by scavenging eATP and ultimately generating adenosine. We propose boosting of CD39 would suppress P2X7 responses and trigger adenosinergic signaling to limit systemic inflammation and restore liver homeostasis during the acute phase of sepsis. Lay summary: CD39 expression in macrophages limits P2X7-mediated pro-inflammatory responses, scavenging extracellular ATP and ultimately generating adenosine. CD39 genetic deletion exacerbates sepsis-induced experimental liver injury. Combinations of a P2X7 antagonist and adenosine A2A receptor agonist are hepatoprotective during the acute phase of abdominal sepsis.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Fígado/imunologia , Fígado/lesões , Receptores Purinérgicos P2X7/metabolismo , Sepse/imunologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/genética , Apirase/deficiência , Apirase/genética , Citocinas/biossíntese , Modelos Animais de Doenças , Interleucina-1beta/biossíntese , Fígado/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/genética , Fator de Transcrição STAT3/metabolismo , Sepse/terapia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
4.
Microbes Infect ; 18(2): 93-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26546965

RESUMO

Inflammasomes are intracellular protein complexes that sense microbial components and damage of infected cells. Following activation by molecules released by pathogens or injured cells, inflammasomes activate caspase-1, allowing secretion of the pro-inflammatory cytokines IL-1ß and IL-18 from innate immune cells. Inflammasomes are also expressed in epithelial cells, where their function has attracted less attention. Nonetheless, depending on the tissue, epithelial inflammasomes can mediate inflammation, wound healing, and pain sensitivity. We review here recent findings on inflammasomes found in epithelial tissues, highlighting the importance of these protein complexes in the response of epithelial tissues to microbial infections.


Assuntos
Células Epiteliais/fisiologia , Infecções/imunologia , Inflamassomos/metabolismo , Animais , Humanos
5.
PLoS One ; 9(10): e110185, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310682

RESUMO

Silicosis is an occupational lung disease, characterized by irreversible and progressive fibrosis. Silica exposure leads to intense lung inflammation, reactive oxygen production, and extracellular ATP (eATP) release by macrophages. The P2X7 purinergic receptor is thought to be an important immunomodulator that responds to eATP in sites of inflammation and tissue damage. The present study investigates the role of P2X7 receptor in a murine model of silicosis. To that end wild-type (C57BL/6) and P2X7 receptor knockout mice received intratracheal injection of saline or silica particles. After 14 days, changes in lung mechanics were determined by the end-inflation occlusion method. Bronchoalveolar lavage and flow cytometry analyzes were performed. Lungs were harvested for histological and immunochemistry analysis of fibers content, inflammatory infiltration, apoptosis, as well as cytokine and oxidative stress expression. Silica particle effects on lung alveolar macrophages and fibroblasts were also evaluated in cell line cultures. Phagocytosis assay was performed in peritoneal macrophages. Silica exposure increased lung mechanical parameters in wild-type but not in P2X7 knockout mice. Inflammatory cell infiltration and collagen deposition in lung parenchyma, apoptosis, TGF-ß and NF-κB activation, as well as nitric oxide, reactive oxygen species (ROS) and IL-1ß secretion were higher in wild-type than knockout silica-exposed mice. In vitro studies suggested that P2X7 receptor participates in silica particle phagocytosis, IL-1ß secretion, as well as reactive oxygen species and nitric oxide production. In conclusion, our data showed a significant role for P2X7 receptor in silica-induced lung changes, modulating lung inflammatory, fibrotic, and functional changes.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Dióxido de Silício/toxicidade , Animais , Apoptose , Líquido da Lavagem Broncoalveolar , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofenotipagem , Interleucina-1beta/metabolismo , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células NIH 3T3 , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/efeitos dos fármacos , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Corantes de Rosanilina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...