Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 272, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507361

RESUMO

Neural progenitor cells (NPCs) of the subventricular zone proliferate in response to ischemic stroke in the adult mouse brain. Newly generated cells have been considered to influence recovery following a stroke. However, the mechanism underlying such protection is a matter of active study since it has been thought that proliferating NPCs mediate their protective effects by secreting soluble factors that promote recovery rather than neuronal replacement in the ischemic penumbra. We tested the hypothesis that this mechanism is mediated by the secretion of multimolecular complexes in extracellular vesicles (EVs). We found that the molecular influence of oxygen and glucose-deprived (OGD) NPCs-derived EVs is very limited in improving overt neurological alterations caused by stroke compared to our recently reported astrocyte-derived EVs. However, when we inhibited the ischemia-triggered proliferation of NPCs with the chronic administration of the DNA synthesis inhibitor Ara-C, the effect of NPC-derived EVs became evident, suggesting that the endogenous protection exerted by the proliferation of NPC is mainly carried out through a mechanism that involves the intercellular communication mediated by EVs. We analyzed the proteomic content of NPC-derived EVs cargo with label-free relative abundance mass spectrometry and identified several molecular mediators of neuronal recovery within these vesicles. Our findings indicate that NPC-derived EVs are protective against the ischemic cascade activated by stroke and, thus, hold significant therapeutic potential.

2.
Mol Neurobiol ; 59(11): 6632-6651, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35980566

RESUMO

Quinolinic acid (QUIN) is an agonist of N-methyl-D-aspartate receptor (NMDAr) used to study the underlying mechanism of excitotoxicity in animal models. There is evidence indicating that impairment in autophagy at early times contributes to cellular damage in excitotoxicity; however, the status of autophagy in QUIN model on day 7 remains unexplored. In this study, the ultrastructural analysis of subcellular compartments and the status of autophagy, necroptosis, and apoptosis in the striatum of rats administered with QUIN (120 nmol and 240 nmol) was performed on day 7. QUIN induced circling behavior, neurodegeneration, and cellular damage; also, it promoted swollen mitochondrial crests, spherical-like morphology, and mitochondrial fragmentation; decreased ribosomal density in the rough endoplasmic reticulum; and altered the continuity of myelin sheaths in axons with separation of the compact lamellae. Furthermore, QUIN induced an increase and a decrease in ULK1 and p-70-S6K phosphorylation, respectively, suggesting autophagy activation; however, the increased microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and sequestosome-1/p62 (SQSTM1/p62), the coexistence of p62 and LC3 in the same structures, and the decrease in Beclin 1 and mature cathepsin D also indicates a blockage in autophagy flux. Additionally, QUIN administration increased tumor necrosis factor alpha (TNFα) and receptor-interacting protein kinase 3 (RIPK3) levels and its phosphorylation (p-RIPK3), as well as decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) levels and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting an activation of necroptosis and apoptosis, respectively. These results suggest that QUIN activates the autophagy, but on day 7, it is blocked and organelle and cellular damage, neurodegeneration, and behavior alterations could be caused by necroptosis and apoptosis activation.


Assuntos
Ácido Quinolínico , Fator de Necrose Tumoral alfa , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Catepsina D/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Necroptose , Ácido Quinolínico/toxicidade , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Sequestossoma-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
Mol Ther ; 30(2): 798-815, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34563674

RESUMO

Spontaneous recovery after a stroke accounts for a significant part of the neurological recovery in patients. However limited, the spontaneous recovery is mechanistically driven by axonal restorative processes for which several molecular cues have been previously described. We report the acceleration of spontaneous recovery in a preclinical model of ischemia/reperfusion in rats via a single intracerebroventricular administration of extracellular vesicles released from primary cortical astrocytes. We used magnetic resonance imaging and confocal and multiphoton microscopy to correlate the structural remodeling of the corpus callosum and striatocortical circuits with neurological performance during 21 days. We also evaluated the functionality of the corpus callosum by repetitive recordings of compound action potentials to show that the recovery facilitated by astrocytic extracellular vesicles was both anatomical and functional. Our data provide compelling evidence that astrocytes can hasten the basal recovery that naturally occurs post-stroke through the release of cellular mediators contained in extracellular vesicles.


Assuntos
Vesículas Extracelulares , Acidente Vascular Cerebral , Animais , Astrócitos , Axônios , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Ratos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/patologia
4.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322180

RESUMO

Tuberculosis (TB) is a chronic infectious disease in which prolonged, non-resolutive inflammation of the lung may lead to metabolic and neuroendocrine dysfunction. Previous studies have reported that individuals coursing pulmonary TB experience cognitive or behavioural changes; however, the pathogenic substrate of such manifestations have remained unknown. Here, using a mouse model of progressive pulmonary TB, we report that, even in the absence of brain infection, TB is associated with marked increased synthesis of both inflammatory and anti-inflammatory cytokines in discrete brain areas such as the hypothalamus, the hippocampal formation and cerebellum accompanied by substantial changes in the synthesis of neurotransmitters. Moreover, histopathological findings of neurodegeneration and neuronal death were found as infection progressed with activation of p38, JNK and reduction in the BDNF levels. Finally, we perform behavioural analysis in infected mice throughout the infection, and our data show that the cytokine and neurochemical changes were associated with a marked onset of cognitive impairment as well as depressive- and anxiety-like behaviour. Altogether, our results suggest that besides pulmonary damage, TB is accompanied by an extensive neuroinflammatory and neurodegenerative state which explains some of the behavioural abnormalities found in TB patients.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Mycobacterium tuberculosis/metabolismo , Neurônios/patologia , Tuberculose Pulmonar/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/microbiologia , Sintomas Comportamentais/microbiologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/citologia , Encéfalo/enzimologia , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Disfunção Cognitiva/microbiologia , Depressão/metabolismo , Depressão/microbiologia , Modelos Animais de Doenças , Regulação para Baixo , Hipocampo/citologia , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/patogenicidade , Neurônios/citologia , Neurotransmissores/metabolismo , Tuberculose Pulmonar/enzimologia , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/psicologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Antioxidants (Basel) ; 8(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514267

RESUMO

In the present study we investigated the participation of brain-derived neurotropic factor (BDNF) on the activation of the mitogen activated protein kinase (MAPK) protein extracellular signal-regulated kinase-1/2 (ERK1/2) as a mechanism of curcumin (CUR) to provide an antioxidant defense system mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2) in the neurotoxic model induced by quinolinic acid (QUIN). Wistar rats received CUR (400 mg/kg, intragastrically) for 6 days after intrastriatal injection with QUIN (240 nmol). CUR improved the motor deficit and morphological alterations induced by QUIN and restored BDNF, ERK1/2, and Nrf2 levels. CUR treatment avoided the decrease in the protein levels of glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamylcysteine ligase (γ-GCL), and glutathione (GSH) levels. Only, the QUIN-induced decrease in the GR activity was prevented by CUR treatment. Finally, QUIN increased superoxide dismutase 2 (SOD2) and catalase (CAT) levels, and the γGCL and CAT activities; however, this increase was major in the QUIN+CUR group for γ-GCL, CAT, and SOD activities. These data suggest that the therapeutic effect of CUR could involve BDNF action on the activation of ERK1/2 to induce increased levels of protein and enzyme activity of antioxidant proteins regulated by Nrf2 and GSH levels.

6.
Neuroscience ; 383: 22-32, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729989

RESUMO

Oxidative stress secondary to excitotoxicity is a common factor in the physiopathology of a variety of neurological disorders. In response to oxidative stress, several signaling pathways, such as MAPK, are activated or inactivated. Mitogen-activated protein kinase (MAPK) family activation must be finely regulated in time and intensity, as this pathway may either preserve cell survival or promote cell death. In the present study, the activation of MAPK in the excitotoxic injury induced by quinolinic acid (QUIN) was examined in vivo, at short and long times. We used different doses (30, 60, 120 and 240 nmol) of QUIN injected intrastriatally in the right rat striatum and the effect of this treatment on motor deficits, cellular damage, MAPK activation and BDNF/TrkB axis, were evaluated at 2 h and 7 days post-lesion. Higher doses of QUIN (120 and 240 nmol) induced rat motor deficits and caused morphological changes in neurons around the lesion core. QUIN decreased the activation of ERK1/2 in a dose-dependent manner at 7 days post-injection, and induced a sustained increase of c-Jun NH2-terminal kinase (JNK) activation from 2 h to 7 days post-injury. JNK activation was dependent on the QUIN-induced NMDAr activation (only 120 nmol). No significant difference in p38 activation with QUIN was observed. QUIN (120 and 240 nmol) decreased BDNF/TrkB levels at 7 days post-injury. JNK inhibition (by an intracerebroventricular injection of SP600125) prevented the QUIN-induced reduction in BDNF and TrkB at 7 day post-injury, suggesting a role for the QUIN-induced JNK activation on the observed decrease in BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Ácido Quinolínico/toxicidade , Receptor trkB/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Neurochem Res ; 42(11): 3041-3051, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28646259

RESUMO

Oxidative stress plays an important role in neurodegenerative diseases and aging. The cellular defense mechanisms to deal with oxidative damage involve the activation of transcription factor related to NF-E2 (Nrf2), which enhances the transcription of antioxidant and phase II enzyme genes. S-allylcysteine (SAC) is an antioxidant with neuroprotective properties, and the main organosulfur compound in aged garlic extract. The ability of SAC to activate the Nrf2 factor has been previously reported in hepatic cells; however this effect has not been studied in normal brain. In order to determine if the chronic administration of SAC is able to activate Nrf2 factor and enhance antioxidant defense in the brain, male Wistar rats were administered with SAC (25, 50, 100 and 200 mg/kg-body weight each 24 h, i.g.) for 90 days. The activation of Nrf2, the levels of p65 and 8-hydroxy-2-deoxyguanosine (8-OHdG) as well as the activities of the enzymes glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were evaluated in the hippocampus, striatum and frontal cortex. Results showed that SAC activated Nrf2 factor in the hippocampus (25-200 mg/kg) and striatum (100 mg/kg) and significantly decreased p65 levels in the frontal cortex (25-200 mg/kg). On the other hand, SAC increased GPx, GR, CAT and SOD activities mainly in the hippocampus and striatum, but it did not change GST activity. Finally, no changes were observed in 8-OHdG levels mediated by SAC in any brain region, but the hippocampus showed a major level of 8-OHdG compared with the striatum and frontal cortex. All these results suggest that in the hippocampus, the observed increase in the activity of antioxidant enzymes could be associated with the ability of SAC to activate Nrf2 factor; however, a different mechanism could be involved in the striatum and frontal cortex, since no changes were found in Nrf2 activation and p65 levels.


Assuntos
Antioxidantes/metabolismo , Corpo Estriado/metabolismo , Cisteína/análogos & derivados , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Cisteína/administração & dosagem , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
9.
Neuroscience ; 350: 65-74, 2017 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-28323011

RESUMO

Apocynin (APO) is a well-known NADPH oxidase (NOX) inhibitor. However, several studies have reported its ability to increase glutathione (GSH) levels. Due to GSH is a major non-enzymatic antioxidant in brain, the aim of this study was to evaluate, in the striatum of control and quinolinic acid (QUIN) injected rats, the effect of APO administration on: (1) GSH levels, (2) activity of some enzymes involved in the GSH metabolism, and (3) nuclear factor erythroid-2-related factor 2 (Nrf2) mRNA levels. Animals received QUIN 240nmol in right striatum and APO (5mg/kg, i.p.), 30min before and 60min after intrastriatal injection. APO treatment prevented the QUIN-induced histological damage to the striatum. In control rats, APO treatment increased GSH and Nrf2 mRNA levels and the activities of gamma-glutamylcysteine ligase (γ-GCL), glutathione-S-transferase (GST) and glutathione peroxidase (GPx). On the other hand, APO treatment prevented the QUIN-induced decrease in GSH and Nrf2 levels, and in γ-GCL and GPx activities. These data indicate that APO is able to increase GSH levels and the activity of proteins involved in its metabolism, which could be associated with its ability to increase the Nrf2 mRNA levels.


Assuntos
Acetofenonas/farmacologia , Antioxidantes/farmacologia , Corpo Estriado/efeitos dos fármacos , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Corpo Estriado/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Ácido Quinolínico/farmacologia , Ratos Wistar
10.
Free Radic Res ; 48(2): 159-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24147739

RESUMO

The neuroprotective properties of S-allyl cysteine (SAC) have been demonstrated in different neurotoxic paradigms, and it may be partially attributable to its antioxidant and anti-inflammatory profile. Recently, SAC has also been shown to induce neuroprotection in the rat striatum in a toxic model induced by 6-hydroxydopamine in rats through a concerted antioxidant response involving Nrf2 transcription factor nuclear transactivation and Phase 2 enzymes' upregulation. In this work, we investigated whether the SAC-induced in vivo striatal and nigral neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridinium (MPTP) toxicity recruits Nrf2 transactivation in C57BL/6J mice. SAC (120 mg/kg, i.p. × 5 days) partially ameliorated the MPTP (30 mg/kg, i.p. × 5 days)-induced striatal and nigral dopamine and tyrosine hydroxylase depletion, attenuated the loss of Mn-SOD and HO-1 activities, and preserved the protein content of these enzymes. While no significant changes were detected for the striatal Nrf2 nuclear protein levels, the nigral Nrf2 nuclear content was decreased by MPTP and stimulated by SAC. Our findings suggest that SAC can exert neuroprotection since the origin of the dopaminergic lesion-at the substantia nigra (SN)-not only by means of direct antioxidant actions, but also through Nrf2 nuclear transactivation and Phase 2 enzymes upregulation.


Assuntos
Corpo Estriado/efeitos dos fármacos , Cisteína/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Núcleo Celular/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Cisteína/farmacologia , Cisteína/uso terapêutico , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...