Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565982

RESUMO

With an appropriate mixture of cyclometalating and ancillary ligands, based on simple structures (commercial or easily synthesized), it has been possible to design a family of eight new Ir(III) complexes (1A, 1B, 2B, 2C, 3B, 3C, 3D and 3E) useful as luminescent materials in LEC devices. These complexes involved the use of phenylpyridines or fluorophenylpyridines as cyclometalating ligands and bipyridine or phenanthroline-type structures as ancillary ligands. The emitting properties have been evaluated from a theoretical approach through Density Functional Theory and Time-Dependent Density Functional Theory calculations, determining geometric parameters, frontier orbital energies, absorption and emission energies, injection and transport parameters of holes and electrons, and parameters associated with the radiative and non-radiative decays. With these complexes it was possible to obtain a wide range of emission colours, from deep red to blue (701-440 nm). Considering all the calculated parameters between all the complexes, it was identified that 1B was the best red, 2B was the best green, and 3D was the best blue emitter. Thus, with the mixture of these complexes, a dual host-guest system with 3D-1B and an RGB (red-green-blue) system with 3D-2B-1B are proposed, to produce white LECs.


Assuntos
Irídio , Compostos Organometálicos , Irídio/química , Ligantes , Luminescência , Modelos Moleculares , Compostos Organometálicos/química
2.
RSC Adv ; 12(17): 10653-10674, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35425025

RESUMO

In this work, the photophysical characteristics of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes were described. The concept of thermally activated delayed fluorescence (TADF) and its development throughout the years was also explained. The importance of ΔE (S1-T1) and spin-orbital coupling (SOC) values on the TADF behavior of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ complexes is discussed. Examples of ΔE (S1-T1) values reported in the literature were collected and some trends were proposed (e.g. the effect of the substituents at the 2,9 positions of the phenanthroline ligand). Besides, the techniques (or calculation methods) used for determining ΔE (S1-T1) values were described. The effect of SOC in TADF was also discussed, and examples of the determination of SOC values by DFT and TD-DFT calculations are provided. The last chapter covers the applications of [Cu(N^N)2]+ and [Cu(N^N)(P^P)]+ TADF complexes and the challenges that are still needed to be addressed to ensure the industrial applications of these compounds.

3.
Molecules ; 26(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804112

RESUMO

Current selective modification methods, coupled with functionalization through organic or inorganic molecules, are crucial for designing and constructing custom-made molecular materials that act as electroactive interfaces. A versatile method for derivatizing surfaces is through an aryl diazonium salt reduction reaction (DSRR). A prominent feature of this strategy is that it can be carried out on various materials. Using the DSRR, we modified gold surface electrodes with 4-aminebenzene from 4-nitrobenzenediazonium tetrafluoroborate (NBTF), regulating the deposited mass of the aryl film to achieve covering control on the electrode surface. We got different degrees of covering: monolayer, intermediate, and multilayer. Afterwards, the ArNO2 end groups were electrochemically reduced to ArNH2 and functionalized with Fe(II)-Phthalocyanine to study the catalytic performance for the oxygen reduction reaction (ORR). The thickness of the electrode covering determines its response in front of ORR. Interestingly, the experimental results showed that an intermediate covering film presents a better electrocatalytic response for ORR, driving the reaction by a four-electron pathway.

4.
J Mol Model ; 19(9): 3569-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23722557

RESUMO

The physisorption of bisphenol A (BPA) on pristine and oxidized graphene was studied theoretically via calculations performed at the PBE-D3 level (including dispersion force corrections). Three stable conformations of BPA on graphene were found. A lying-down configuration was energetically favored because the presence of π-π stacking and dispersion forces increased interactions. In addition, the adsorption of BPA on the edges of graphene oxide was enhanced when adsorption occurred on carboxyl and carbonyl groups, whereas the adsorption strength decreased when adsorption occurred on hydroxyl groups. The highest physisorption strength was obtained on the surface of graphene oxide due to the presence of π-π stacking and dispersion forces (which provided the greatest contribution to the adsorption energy) as well as hydrogen bonds (which provided a smaller contribution), indicating that oxidized graphene is a better candidate than pristine graphene for BPA removal. On the other hand, an increase in electrophilicity was observed after the physisorption of BPA in all systems (with respect to graphene and BPA in their isolated forms), with the adsorbent acting as the electron acceptor. Finally, molecular dynamics simulations performed using the PM6 Hamiltonian showed that the adsorption of BPA on graphene is stable.


Assuntos
Compostos Benzidrílicos/química , Grafite/química , Modelos Moleculares , Óxidos/química , Fenóis/química , Adsorção , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...