Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Pat ; 22(11): 1337-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23009122

RESUMO

INTRODUCTION: The NMDA receptor is a ligand-gated ion channel that plays a critical role in higher level brain processes and has been implicated in a range of neurological and psychiatric conditions. Although initial studies for the use of NMDA receptor antagonists in neuroprotection were unsuccessful, more recently, NMDA receptor antagonists have shown clinical promise in other indications such as Alzheimer's disease, Parkinson's disease, pain and depression. Based on the clinical observations and more recent insights into receptor pharmacology, new modulatory approaches are beginning to emerge, with potential therapeutic benefit. AREAS COVERED: The article covers the known pharmacology and important features regarding NMDA receptors and their function. A discussion of pre-clinical and clinical relevance is included, as well. The subsequent patent literature review highlights the current state of the art targeting the receptor since the last review in 2010. EXPERT OPINION: The complex nature of the NMDA receptor structure and function is becoming better understood. As knowledge about this receptor increases, it opens up new opportunities for targeting the receptor for many therapeutic indications. New strategies and advances in older technologies will need to be further developed before clinical success can be achieved. First-in-class potentiators and subunit-selective agents form the basis for most new strategies, complemented by efforts to limit off-target liability and fine-tune on-target properties.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Desenho de Fármacos , Agonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/química , Humanos , Estrutura Molecular , Patentes como Assunto , Conformação Proteica , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
2.
Nat Commun ; 1: 90, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20981015

RESUMO

NMDA receptors are tetrameric complexes of NR1 and NR2A-D subunits that mediate excitatory synaptic transmission and have a role in neurological disorders. In this article, we identify a novel subunit-selective potentiator of NMDA receptors containing the NR2C or NR2D subunit, which could allow selective modification of circuit function in regions expressing NR2C/D subunits. The substituted tetrahydroisoquinoline CIQ (3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone) enhances receptor responses two-fold with an EC(50) of 3 µM by increasing channel opening frequency without altering mean open time or EC(50) values for glutamate or glycine. The actions of CIQ depend on a single residue in the M1 region (NR2D Thr592) and on the linker between the N-terminal domain and agonist binding domain. CIQ potentiates native NR2D-containing NMDA receptor currents from subthalamic neurons. Our identification of a subunit-selective NMDA receptor modulator reveals a new class of pharmacological tools with which to probe the role of NR2C- and NR2D-containing NMDA receptors in brain function and disease.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
3.
Bioorg Med Chem ; 17(17): 6463-80, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19648014

RESUMO

The synthesis and structure-activity relationship analysis of a novel class of amide-based biaryl NR2B-selective NMDA receptor antagonists are presented. Some of the studied compounds are potent, selective, non-competitive, and voltage-independent antagonists of NR2B-containing NMDA receptors. Like the founding member of this class of antagonists (ifenprodil), several interesting compounds of the series bind to the amino terminal domain of the NR2B subunit to inhibit function. Analogue potency is modulated by linker length, flexibility, and hydrogen bonding opportunities. However, unlike previously described classes of NR2B-selective NMDA antagonists that exhibit off-target activity at a variety of monoamine receptors, the compounds described herein show much diminished effects against the hERG channel and alpha(1)-adrenergic receptors. Selections of the compounds discussed have acceptable half-lives in vivo and are predicted to permeate the blood-brain barrier. These data together suggest that masking charged atoms on the linker region of NR2B-selective antagonists can decrease undesirable side effects while still maintaining on-target potency.


Assuntos
Amidas/síntese química , Fármacos Neuroprotetores/síntese química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sítio Alostérico , Amidas/química , Amidas/farmacologia , Animais , Linhagem Celular , Cães , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oócitos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...