Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Soft Matter ; 20(3): 484-494, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37842771

RESUMO

Understanding and controlling microbial adhesion is a critical challenge in biomedical research, given the profound impact of bacterial infections on global health. Many facets of bacterial adhesion, including the distribution of adhesion forces across the cell wall, remain poorly understood. While a recent 'patchy colloid' model has shed light on adhesion in Gram-negative Escherichia coli cells, a corresponding model for Gram-positive cells has been elusive. In this study, we employ single cell force spectroscopy to investigate the adhesion force of Staphylococcus aureus. Normally, only one contact point of the entire bacterial surface is measured. However, by using a sine-shaped surface and recording force-distance curves along a path perpendicular to the rippled structures, we can characterize almost a hemisphere of one and the same bacterium. This unique approach allows us to study a greater number of contact points between the bacterium and the surface compared to conventional flat substrata. Distributed over the bacterial surface, we identify sites of higher and lower adhesion, which we call 'patchy adhesion', reminiscent of the patchy colloid model. The experimental results show that only some cells exhibit particularly strong adhesion at certain locations. To gain a better understanding of these locations, a geometric model of the bacterial cell surface was created. The experimental results were best reproduced by a model that features a few (5-6) particularly strong adhesion sites (diameter about 250 nm) that are widely distributed over the cell surface. Within the simulated patches, the number of molecules or their individual adhesive strength is increased. A more detailed comparison shows that simple geometric considerations for interacting molecules are not sufficient, but rather strong angle-dependent molecule-substratum interactions are required. We discuss the implications of our results for the development of new materials and the design and analysis of future studies.


Assuntos
Aderência Bacteriana , Staphylococcus aureus , Propriedades de Superfície , Microscopia de Força Atômica/métodos , Parede Celular , Bactérias , Coloides
3.
Nat Commun ; 14(1): 7532, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985763

RESUMO

Intracellular vesicular transport along cytoskeletal filaments ensures targeted cargo delivery. Such transport is rarely unidirectional but rather bidirectional, with frequent directional reversals owing to the simultaneous presence of opposite-polarity motors. So far, it has been unclear whether such complex motility pattern results from the sole mechanical interplay between opposite-polarity motors or requires regulators. Here, we demonstrate that a minimal system, comprising purified Dynein-Dynactin-BICD2 (DDB) and kinesin-3 (KIF16B) attached to large unilamellar vesicles, faithfully reproduces in vivo cargo motility, including runs, pauses, and reversals. Remarkably, opposing motors do not affect vesicle velocity during runs. Our computational model reveals that the engagement of a small number of motors is pivotal for transitioning between runs and pauses. Taken together, our results suggest that motors bound to vesicular cargo transiently engage in a tug-of-war during pauses. Subsequently, stochastic motor attachment and detachment events can lead to directional reversals without the need for regulators.


Assuntos
Dineínas , Cinesinas , Dineínas/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Citoesqueleto/metabolismo , Complexo Dinactina/metabolismo , Microtúbulos/metabolismo
4.
J Cell Sci ; 133(22)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257498

RESUMO

The maintenance of intracellular processes, like organelle transport and cell division, depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins, which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameters using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors only have a small effect.


Assuntos
Dineínas do Citoplasma , Cinesinas , Trifosfato de Adenosina , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo
5.
Nanoscale ; 12(37): 19267-19275, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32935690

RESUMO

Bacterial adhesion to surfaces is a crucial step in initial biofilm formation. In a combined experimental and computational approach, we studied the adhesion of the pathogenic bacterium Staphylococcus aureus to hydrophilic and hydrophobic surfaces. We used atomic force microscopy-based single-cell force spectroscopy and Monte Carlo simulations to investigate the similarities and differences of adhesion to hydrophilic and hydrophobic surfaces. Our results reveal that binding to both types of surfaces is mediated by thermally fluctuating cell wall macromolecules that behave differently on each type of substrate: on hydrophobic surfaces, many macromolecules are involved in adhesion, yet only weakly tethered, leading to high variance between individual bacteria, but low variance between repetitions with the same bacterium. On hydrophilic surfaces, however, only few macromolecules tether strongly to the surface. Since during every repetition with the same bacterium different macromolecules bind, we observe a comparable variance between repetitions and different bacteria. We expect these findings to be of importance for the understanding of the adhesion behaviour of many bacterial species as well as other microorganisms and even nanoparticles with soft, macromolecular coatings, used e.g. for biological diagnostics.


Assuntos
Aderência Bacteriana , Staphylococcus aureus , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Propriedades de Superfície
6.
PLoS One ; 15(7): e0235864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645101

RESUMO

In eukaryotic cells, KDEL receptors (KDELRs) facilitate the retrieval of endoplasmic reticulum (ER) luminal proteins from the Golgi compartment back to the ER. Apart from the well-documented retention function, recent findings reveal that the cellular KDELRs have more complex roles, e.g. in cell signalling, protein secretion, cell adhesion and tumorigenesis. Furthermore, several studies suggest that a sub-population of KDELRs is located at the cell surface, where they could form and internalize KDELR/cargo clusters after K/HDEL-ligand binding. However, so far it has been unclear whether there are species- or cell-type-specific differences in KDELR clustering. By comparing ligand-induced KDELR clustering in different mouse and human cell lines via live cell imaging, we show that macrophage cell lines from both species do not develop any clusters. Using RT-qPCR experiments and numerical analysis, we address the role of KDELR expression as well as endocytosis and exocytosis rates on the receptor clustering at the plasma membrane and discuss how the efficiency of directed transport to preferred docking sites on the membrane influences the exponent of the power-law distribution of the cluster size.


Assuntos
Receptores de Peptídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Endocitose , Exocitose , Expressão Gênica , Humanos , Macrófagos/metabolismo , Camundongos , Transporte Proteico , RNA Mensageiro/análise , RNA Mensageiro/genética , Receptores de Peptídeos/análise , Receptores de Peptídeos/genética , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/genética
7.
Phys Rev Lett ; 124(19): 198103, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469583

RESUMO

Within cells, vesicles and proteins are actively transported several micrometers along the cytoskeletal filaments. The transport along microtubules is propelled by dynein and kinesin motors, which carry the cargo in opposite directions. Bidirectional intracellular transport is performed with great efficiency, even under strong confinement, as for example in the axon. For this kind of transport system, one would expect generically cluster formation. In this Letter, we discuss the effect of the recently observed self-enhanced binding affinity along the kinesin trajectories on the microtubule. We introduce a stochastic lattice-gas model, where the enhanced binding affinity is realized via a floor field. From Monte Carlo simulations and a mean-field analysis we show that this mechanism can lead to self-organized symmetry breaking and lane formation that indeed leads to efficient bidirectional transport in narrow environments.


Assuntos
Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Animais , Axônios/metabolismo , Transporte Biológico , Dineínas/química , Dineínas/metabolismo , Humanos , Cinesinas/química , Cinesinas/metabolismo , Modelos Neurológicos , Método de Monte Carlo , Processos Estocásticos
8.
Phys Rev Lett ; 125(26): 268102, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449749

RESUMO

Migration of immune cells within the human body allows them to fulfill their main function of detecting pathogens. We present experimental evidence showing the optimality of the search strategy of these cells, which is of crucial importance to achieve an efficient immune response. We find that the speed and directional persistence of migrating dendritic cells in our in vitro experiments are highly correlated, which enables them to reduce their search time. We introduce theoretically a new class of random search optimization problems by minimizing the mean first-passage time (MFPT) with respect to the strength of the coupling between influential parameters. We derive an analytical expression for the MFPT in a confined geometry and verify that the correlated motion enhances the search efficiency if the mean persistence length is sufficiently shorter than the confinement size. Our correlated search optimization approach provides an efficient searching recipe and predictive power in a broad range of correlated stochastic processes.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Modelos Imunológicos , Animais , Simulação por Computador , Células Dendríticas/citologia , Camundongos , Processos Estocásticos
9.
Langmuir ; 35(28): 9202-9212, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31268722

RESUMO

Class II hydrophobins are amphiphilic proteins produced by filamentous fungi. One of their typical features is the tendency to accumulate at the interface between an aqueous phase and a hydrophobic phase, such as the air-water interface. The kinetics of the interfacial self-assembly of wild-type hydrophobins HFBI and HFBII and some of their engineered variants at the air-water interface were measured by monitoring the accumulated mass at the interface via nondestructive ellipsometry measurements. The resulting mass vs time curves revealed unusual kinetics for a monolayer formation that did not follow a typical Langmuir-type of behavior but had a rather coverage-independent rate instead. Typically, the full surface coverage was obtained at masses corresponding to a monolayer. The formation of multilayers was not observed. Atomic force microscopy revealed formation and growth of non-fusing protein clusters at the interface. The mechanism of the adsorption was studied by varying the structure or charges of the protein or the ionic strength of the subphase, revealing that the lateral interactions between the hydrophobins play a role in their interfacial assembly. Additionally, a theoretical model was introduced to identify the underlying mechanism of the unconventional adsorption kinetics.


Assuntos
Proteínas Fúngicas/química , Trichoderma/química , Ar , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Água/química
10.
Biophys J ; 115(10): 2014-2025, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30366628

RESUMO

We present a coarse-grained model for stochastic transport of noninteracting chemical signals inside neuronal dendrites and show how first-passage properties depend on the key structural factors affected by neurodegenerative disorders or aging: the extent of the tree, the topological bias induced by segmental decrease of dendrite diameter, and the trapping probabilities in biochemical cages and growth cones. We derive an exact expression for the distribution of first-passage times, which follows a universal exponential decay in the long-time limit. The asymptotic mean first-passage time exhibits a crossover from power-law to exponential scaling upon reducing the topological bias. We calibrate the coarse-grained model parameters and obtain the variation range of the mean first-passage time when the geometrical characteristics of the dendritic structure evolve during the course of aging or neurodegenerative disease progression (a few disorders for which clear trends for the pathological changes of dendritic structure have been reported in the literature are chosen and studied). We prove the validity of our analytical approach under realistic fluctuations of structural parameters by comparison to the results of Monte Carlo simulations. Moreover, by constructing local structural irregularities, we analyze the resulting influence on transport of chemical signals and formation of heterogeneous density patterns. Because neural functions rely on chemical signal transmission to a large extent, our results open the possibility of establishing a direct link between the disease progression and neural functions.


Assuntos
Dendritos/metabolismo , Modelos Neurológicos , Transporte Biológico , Transdução de Sinais , Processos Estocásticos
11.
J Cell Sci ; 132(4)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30237223

RESUMO

Long-range intracellular transport is facilitated by motor proteins, such as kinesin-1 and cytoplasmic dynein, moving along microtubules (MTs). These motors often work in teams for the transport of various intracellular cargos. Although transport by multiple kinesin-1 motors has been studied extensively in the past, collective effects of cytoplasmic dynein are less well understood. On the level of single molecules, mammalian cytoplasmic dynein is not active in the absence of dynactin and adaptor proteins. However, when assembled into a team bound to the same cargo, processive motility has been observed. The underlying mechanism of this activation is not known. Here, we found that in MT gliding motility assays the gliding velocity increased with dynein surface density and MT length. Developing a mathematical model based on single-molecule parameters, we were able to simulate the observed behavior. Integral to our model is the usage of an activation term, which describes a mechanical activation of individual dynein motors when being stretched by other motors. We hypothesize that this activation is similar to the activation of single dynein motors by dynactin and adaptor proteins.This article has an associated First Person interview with the first author of the paper.


Assuntos
Citoplasma/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Animais , Transporte Biológico/fisiologia , Complexo Dinactina/metabolismo , Humanos , Cinesinas/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
12.
Phys Rev E ; 95(3-1): 032108, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415173

RESUMO

We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.

13.
Sci Rep ; 6: 37162, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27849013

RESUMO

Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics.


Assuntos
Proteínas do Citoesqueleto/química , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas Motores Moleculares/química , Proteínas do Citoesqueleto/metabolismo , Proteínas Motores Moleculares/metabolismo
14.
Sci Rep ; 6: 30285, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27461361

RESUMO

Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the cell to efficiently adapt to changes in the environment. We show that the functional differences of MTs in different cell types and regions is reflected in the dynamic properties of MT tips. Using plus-end tracking proteins EB1 to monitor growing MT plus-ends, we show that MT dynamics and life cycle in axons of human neurons significantly differ from that of fibroblast cells. The density of plus-ends, as well as the rescue and catastrophe frequencies increase while the growth rate decreases toward the fibroblast cell margin. This results in a rather stable filamentous network structure and maintains the connection between nucleus and membrane. In contrast, plus-ends are uniformly distributed along the axons and exhibit diverse polymerization run times and spatially homogeneous rescue and catastrophe frequencies, leading to MT segments of various lengths. The probability distributions of the excursion length of polymerization and the MT length both follow nearly exponential tails, in agreement with the analytical predictions of a two-state model of MT dynamics.


Assuntos
Fibroblastos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/classificação , Microtúbulos/ultraestrutura , Neurônios/ultraestrutura , Especificidade de Órgãos , Polimerização
15.
Sci Rep ; 6: 28940, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353000

RESUMO

Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTA(H/KDEL)), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.


Assuntos
Membrana Celular/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Ricina/metabolismo , Algoritmos , Sítios de Ligação , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico
16.
Soft Matter ; 11(46): 8913-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26294050

RESUMO

The adhesion of pathogenic bacteria to surfaces is of immense importance for health care applications. Via a combined experimental and computational approach, we studied the initiation of contact in the adhesion process of the pathogenic bacterium Staphylococcus aureus. AFM force spectroscopy with single cell bacterial probes paired with Monte Carlo simulations enabled an unprecedented molecular investigation of the contact formation. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins. Thereby, the bacteria are pulled into close contact with the surface as consecutive proteins of different stiffnesses attach. This mechanism greatly enhances the attachment capability of S. aureus. It, however, can be manipulated by enzymatically/chemically modifying the cell wall proteins to block their consecutive binding. Our study furthermore reveals that fluctuations in protein density and structure are much more relevant than the exact form of the binding potential.


Assuntos
Aderência Bacteriana , Staphylococcus aureus/química , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Proteínas/metabolismo , Propriedades de Superfície
17.
Artigo em Inglês | MEDLINE | ID: mdl-26172744

RESUMO

The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.

18.
Artigo em Inglês | MEDLINE | ID: mdl-25314383

RESUMO

We theoretically study the transport properties of self-propelled particles on complex structures, such as motor proteins on filament networks. A general master equation formalism is developed to investigate the persistent motion of individual random walkers, which enables us to identify the contributions of key parameters: the motor processivity, and the anisotropy and heterogeneity of the underlying network. We prove the existence of different dynamical regimes of anomalous motion, and that the crossover times between these regimes as well as the asymptotic diffusion coefficient can be increased by several orders of magnitude within biologically relevant control parameter ranges. In terms of motion in continuous space, the interplay between stepping strategy and persistency of the walker is established as a source of anomalous diffusion at short and intermediate time scales.


Assuntos
Modelos Teóricos , Movimento (Física) , Difusão
19.
Biophys J ; 100(4): 832-8, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21320426

RESUMO

The microtubule (MT) network, an important part of the cytoskeleton, is constantly remodeled by alternating phases of growth and shrinkage of individual filaments. Plus-end tracking proteins (+TIPs) interact with the MT and in many cases alter its dynamics. Although it is established that some +TIPs modify MT dynamics by increasing rescues, the plus-end tracking mechanism is still under debate. We present a model for MT dynamics in which a rescue factor is dynamically added to the filament during growth. As a consequence, the filament shows aging behavior that should be experimentally accessible and thus allow one to exclude some hypothesized models regarding the inclusion of rescue factors at the MT plus end. This result is not limited to +TIPs and can be extended to any kind of mechanism shifting the parameters of dynamic instability. Additionally, we show that the cell geometry has a strong influence on the quantitative results.


Assuntos
Microtúbulos/metabolismo , Modelos Biológicos , Sítios de Ligação , Polaridade Celular , Simulação por Computador , Cinética , Fatores de Tempo
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 1): 060902, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304033

RESUMO

We find a statistical mechanism that can adjust orientations of intracellular filaments to cell geometry in the absence of organizing centers. The effect is based on random and isotropic filament (de-)polymerization dynamics and is independent of filament interactions and explicit regulation. It can be understood by an analogy to electrostatics and appears to be induced by the confining boundaries; for periodic boundary conditions, no orientational bias emerges. Including active transport of particles, the model reproduces experimental observations of vesicle accumulations in transected axons.


Assuntos
Espaço Intracelular/metabolismo , Modelos Biológicos , Axônios/metabolismo , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...