Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 188: 114667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653447

RESUMO

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.


Assuntos
Compostos Benzidrílicos , Cricetulus , Ácidos Graxos , Insulina , Fenóis , Transdução de Sinais , Sulfonas , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Animais , Camundongos , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos/metabolismo , Células CHO , Sulfonas/toxicidade , Células 3T3-L1 , Disruptores Endócrinos/toxicidade , Resistência à Insulina , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
2.
J Proteomics ; 232: 104053, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33238212

RESUMO

Therapeutic monoclonal antibodies (mAbs) are structurally large and complex molecules. To be safe and efficacious, a biosimilar mAb must show high similarity to its reference product in Critical Quality Attributes (CQA). mAbs are highly sensitive to protein expression, production, manufacturing, supply chain, and storage conditions. All these factors make biosimilar mAbs intrinsically susceptible for variability during production. Accordingly, several lots of references and tests are required to establish the biosimilarity of a test mAb. The primary structure is a CQA of a mAb affecting its safety and efficacy. Here, we apply peptide mapping as an analytical method to decipher the primary structure and associated modifications for a quick quality assessment of TrastuzumAb and RituximAb innovator and biosimilar. A multiple-parallel-protease digestion strategy followed by high-resolution mass spectrometric analysis consistently achieved 100% sequence coverage along with reliable detection of post-translational modifications. Additionally, the use of supporting methods such as intact mass analysis and circular dichroism helped us to decipher the primary and higher order structures of these mAbs. We identify discernible variations in the profile of the innovator and biosimilar mAbs and validate the method for quick yet deep comparability analysis of the primary structure of biosimilar mAbs sold in the market. SIGNIFICANCE: Peptide mapping using bottom-up approach is one of the most common methods for the characterization of therapeutic monoclonal antibodies. Herein, we describe a multi-parallel-protease digestion strategy using a combination of five different proteases followed by high-resolution mass spectrometric analysis with TrastuzumAb and RituximAb as an example. This resulted in a comprehensive identification of peptides with increased reliability and identification of different PTMs. Additional supporting orthogonal methods like intact mass and higher-order structure analysis helped evaluate broader conformational properties.


Assuntos
Anticorpos Monoclonais , Medicamentos Biossimilares , Digestão , Glicosilação , Espectrometria de Massas , Peptídeo Hidrolases , Mapeamento de Peptídeos , Reprodutibilidade dos Testes
3.
J Proteomics ; 208: 103481, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31394310

RESUMO

Prediabetes is a risk factor for the development of diabetes. Early diagnosis of prediabetes may prevent the onset and progression of diabetes and its associated complications. Therefore, this study aimed at the identification of novel markers for efficient prediction of prediabetes. In this pursuit, we have evaluated the ability of glycated peptides of albumin in predicting prediabetes. Glycated peptides of in vitro glycated albumin were characterized by data dependent acquisition and parallel reaction monitoring using LC-HRMS. Amongst 14 glycated peptides characterized in vitro, four peptides, particularly, FK(CML)DLGEENFK, K(AML)VPQVSTPTLVEVSR, K(CML)VPQVSTPTLVEVSR, and K(AML)QTALVELVK, corresponding to 3 glucose sensitive lysine residues K36, K438, and K549, respectively showed significantly higher abundance in prediabetes than control. Additionally, the abundance of three of these peptides, namely K(AML)QTALVELVK, K(CML)VPQVSTPTLVEVSR and FK(CML)DLGEENFK was >1.8-fold in prediabetes, which was significantly higher than the differences observed for FBG, PPG, and HbA1c. Further, the four glycated peptides showed a significant correlation with FBG, PPG, HbA1c, triglycerides, VLDL, and HDL. This study supports that glycated peptides of glucose sensitive lysine residues K36, K438 and K549 of albumin could be potentially useful markers for prediction of prediabetes. SIGNIFICANCE: Undiagnosed prediabetes may lead to diabetes and associated complications. This study reports targeted quantification of four glycated peptides particulary FK(CML)DLGEENFK, K(AML)VPQVSTPTLVEVSR, K(CML)VPQVSTPTLVEVSR, and K(AML)QTALVELVK, corresponding to 3 glucose sensitive lysine residues K36, K438 and K549 respectively by parallel reaction monitoring in healthy and prediabetic subjects. These peptides showed significantly higher abundance in prediabetes than healthy subjects, and showed significant correlation with various clinical parameters including FBG, PPG, HbA1c, and altered lipid profile. Therefore, together these four peptides constitute a panel of markers that can be useful for prediction of prediabetes.


Assuntos
Estado Pré-Diabético/metabolismo , Albumina Sérica Humana/metabolismo , Feminino , Glucose/metabolismo , Glicosilação , Humanos , Lisina/metabolismo , Masculino
4.
J Proteomics ; 185: 25-38, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959084

RESUMO

To understand the impact of fetal bovine serum (FBS) on metabolism and cellular architecture in addition to morphogenesis, we have identified FBS responsive proteome of Candida albicans. FBS induced 34% hyphae and 60% pseudohyphae in C. albicans at 30 °C while 98% hyphae at 37 °C. LC-MS/MS analysis revealed that 285 proteins modulated significantly in response to FBS at 30 °C and 37 °C. Out of which 152 were upregulated and 62 were downregulated at 30 °C while 18 were up and 53 were downregulated at 37 °C. Functional annotation suggests that FBS may inhibit glycolysis and fermentative pathway and enhance oxidative phosphorylation (OxPhos), TCA cycle, amino acid and fatty acid metabolism indicating a use of alternative energy source by C. albicans. OxPhos inhibition assay using sodium azide corroborated the correlation between inhibition of glycolysis and enhanced OxPhos with pseudohyphae formation. C. albicans induced hyphae in response to FBS irrespective of down regulation of Ras1,Asr1/Asr2, indicates the possible involvement of MAPK and cAMP-PKA independent pathway. The Cell wall of cells grown in presence of FBS at 30 °C was rich in mannan, Beta 1,3-glucan and chitin while membranes were rich in ergosterol compared to those grown at 37 °C. SIGNIFICANCE OF THE STUDY: This is the first study suggesting a correlation between OxPhos and morphogenesis especially pseudohyphae formation in C. albicans. Our data also indicate that fetal bovine serum (FBS) induced morphogenesis is multifactorial and may involve MAPK and cAMP-PKA independent pathway. In addition to morphogenesis, our study provides an insight in to the modulation of metabolism and cellular architecture of C. albicans in response to FBS.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Morfogênese/fisiologia , Fosforilação Oxidativa , Proteoma/metabolismo , Soro/fisiologia , Animais , Bovinos , Cromatografia Líquida , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Espectrometria de Massas em Tandem
5.
Sci Rep ; 8(1): 2810, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434241

RESUMO

In cervical cancer, the association between HPV infection and dysregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTOR pathway) places mTOR as an attractive therapeutic target. The failure of current treatment modalities in advanced stages of this cancer and drawbacks of already available mTOR inhibitors demand for novel drug candidates. In the present study we identified the presence of a mTOR inhibitor in an active fraction of the ethyl acetate extract of Streptomyces sp OA293. The metabolites(s) in the active fraction completely inhibited mTORC1 and thereby suppressed activation of both of its downstream targets, 4E-BP1 and P70S6k, in cervical cancer cells. In addition, it also stalled Akt activation via inhibition of mTORC2. The mechanism of mTOR inhibition detailed in our study overcomes significant drawbacks of well known mTOR inhibitors such as rapamycin and rapalogs. The active fraction induced autophagy and Bax mediated apoptosis suggesting that mTOR inhibition resulted in programmed cell death of cancer cells. The molecular weight determination of the components in active fraction confirmed the absence of any previously known natural mTOR inhibitor. This is the first report of complete mTOR complex inhibition by a product derived from microbial source.


Assuntos
Produtos Biológicos/farmacologia , Streptomyces/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias do Colo do Útero/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Streptomyces/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Sci Rep ; 6: 20893, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26869357

RESUMO

Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter.

7.
J Microbiol Biotechnol ; 19(11): 1342-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19996685

RESUMO

We have isolated endophytic fungi from Indian yew tree, Taxus baccata and then screened for taxol production. Out of the forty fungal cultures screened, one fungus Gliocladium sp. was found to produce taxol and 10DAB III (10 Deacetyl baccatin III). These compounds were purified by TLC, HPLC and characterized using UV-Spectroscopy, ESI-MS, MS/MS and proton NMR. One liter of Gliocladium sp. culture yielded 10 microg of taxol and 65 microg of 10 DAB III. The purified taxol from the fungus showed cytotoxicity towards cancer lines HL-60 (leukemia), A431 (epidermal carcinoma) and MCF-7 (breast cancer).


Assuntos
Gliocladium/metabolismo , Paclitaxel/biossíntese , Paclitaxel/química , Paclitaxel/isolamento & purificação , Taxoides/química , Taxoides/isolamento & purificação , Taxoides/metabolismo , Taxus/microbiologia , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Gliocladium/isolamento & purificação , Humanos , Índia , Espectroscopia de Ressonância Magnética , Paclitaxel/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem , Taxoides/farmacologia , Pesos e Medidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA