Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Hum Genet ; 68(1): 39-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284191

RESUMO

A cohort of polycystic ovary syndrome (PCOS) women presents themselves with persistent abnormal reproductive hormone levels and has a familial representation of characteristics. In our study, we have aimed to identify genetic variants which are inherited across such PCOS families and also validate them among Indian population. Independent discovery was done by whole exome sequencing in a three-generation family (Family P01). Validation was done by targeted sequencing at 30,000x using HaloPlex panel in 9 families (P01-P09). The variants were filtered and reported according to American College of Medical Genetics and Genomics (ACMG) guidelines. Mutation burden analysis and in-silico functional analyses were performed. After careful annotation analyses, we report 24 likely pathogenic variants from 21 genes, out of which 8 are novel structural variants, 14 missense variants and 2 intronic variants. Out of these, 3 variants from the genes FSHR, SCARB1, and INSR are involved in the ovarian steroidogenesis pathway and 5 variants from genes DFFB, ACTG1, GPX4, CYC1 and ALDOA directly or indirectly trigger the apoptotic pathways. Three ovarian steroidogenesis variants, FSHR, SCARB1 and INSR were screened among Indian women using a case-control approach to validate these variant's pathogenicity in Indian PCOS women. Variants of SCARB1 and INSR were found to be pathogenic to Indian PCOS women, while FSHR variants did not show significant association to PCOS cases.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/genética , Exoma/genética , Estudos de Casos e Controles , Mutação , Mutação de Sentido Incorreto , Predisposição Genética para Doença
2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-740341

RESUMO

BACKGROUND AND OBJECTIVES: To analyse the audiometric profile and the pedigree of a large family with otosclerosis to understand the inheritance pattern and its implication in clinical management of the disease. SUBJECTS AND METHODS: Pedigree analysis was performed on the basis of family history and audiometric tests. Pure tone audiometry, tympanometry, and acoustic reflexes were evaluated for the family members. Audiometric analysis was also carried out for the individuals who have already underwent corrective surgery at the time of study. RESULTS: Out of 112 family members, 17 were affected individuals, and 11 of them were surgically confirmed. Hearing loss (HL) started unilaterally and progressed to bilateral form. Otosclerosis was presented in early 20’s in the first and second generations but it was delayed to mid-late 30’s in the fourth generation. An affected female was diagnosed with otosclerosis during her pregnancy. Though the disease was familial, a mother of four affected offspring in this family did not develop otosclerosis until she died at the age of 84. CONCLUSIONS: The five-generation family, which was analysed in the present study, exhibited autosomal dominant inheritance of otosclerosis with reduced penetrance. Bilateral HL and pregnancy-aggravated otosclerosis were observed in this family. It was found for the first time that the age of onset of the disease delayed in the successive generations. The current study indicated the importance of detailed pedigree analysis for better clinical management of otosclerosis.


Assuntos
Feminino , Humanos , Gravidez , Testes de Impedância Acústica , Idade de Início , Audiometria , Características da Família , Perda Auditiva , Perda Auditiva Condutiva , Padrões de Herança , Mães , Otosclerose , Linhagem , Penetrância , Reflexo Acústico , Testamentos
3.
PLoS One ; 9(1): e84773, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416283

RESUMO

Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL) in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent.


Assuntos
Alelos , Perda Auditiva/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Éxons/genética , Feminino , Heterozigoto , Homozigoto , Humanos , Índia , Íntrons/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...