Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(32): 38477-38490, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34370459

RESUMO

Heteroepitaxy of ß-phase gallium oxide (ß-Ga2O3) thin films on foreign substrates shows promise for the development of next-generation deep ultraviolet solar blind photodetectors and power electronic devices. In this work, the influences of the film thickness and crystallinity on the thermal conductivity of (2̅01)-oriented ß-Ga2O3 heteroepitaxial thin films were investigated. Unintentionally doped ß-Ga2O3 thin films were grown on c-plane sapphire substrates with off-axis angles of 0° and 6° toward ⟨112̅0⟩ via metal-organic vapor phase epitaxy (MOVPE) and low-pressure chemical vapor deposition. The surface morphology and crystal quality of the ß-Ga2O3 thin films were characterized using scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. The thermal conductivities of the ß-Ga2O3 films were measured via time-domain thermoreflectance. The interface quality was studied using scanning transmission electron microscopy. The measured thermal conductivities of the submicron-thick ß-Ga2O3 thin films were relatively low as compared to the intrinsic bulk value. The measured thin film thermal conductivities were compared with the Debye-Callaway model incorporating phononic parameters derived from first-principles calculations. The comparison suggests that the reduction in the thin film thermal conductivity can be partially attributed to the enhanced phonon-boundary scattering when the film thickness decreases. They were found to be a strong function of not only the layer thickness but also the film quality, resulting from growth on substrates with different offcut angles. Growth of ß-Ga2O3 films on 6° offcut sapphire substrates was found to result in higher crystallinity and thermal conductivity than films grown on on-axis c-plane sapphire. However, the ß-Ga2O3 films grown on 6° offcut sapphire exhibit a lower thermal boundary conductance at the ß-Ga2O3/sapphire heterointerface. In addition, the thermal conductivity of MOVPE-grown (2̅01)-oriented ß-(AlxGa1-x)2O3 thin films with Al compositions ranging from 2% to 43% was characterized. Because of phonon-alloy disorder scattering, the ß-(AlxGa1-x)2O3 films exhibit lower thermal conductivities (2.8-4.7 W/m·K) than the ß-Ga2O3 thin films. The dominance of the alloy disorder scattering in ß-(AlxGa1-x)2O3 is further evidenced by the weak temperature dependence of the thermal conductivity. This work provides fundamental insight into the physical interactions that govern phonon transport within heteroepitaxially grown ß-phase Ga2O3 and (AlxGa1-x)2O3 thin films and lays the groundwork for the thermal modeling and design of ß-Ga2O3 electronic and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...