Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 622(7982): 367-375, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730998

RESUMO

The ever-growing compendium of genetic variants associated with human pathologies demands new methods to study genotype-phenotype relationships in complex tissues in a high-throughput manner1,2. Here we introduce adeno-associated virus (AAV)-mediated direct in vivo single-cell CRISPR screening, termed AAV-Perturb-seq, a tuneable and broadly applicable method for transcriptional linkage analysis as well as high-throughput and high-resolution phenotyping of genetic perturbations in vivo. We applied AAV-Perturb-seq using gene editing and transcriptional inhibition to systematically dissect the phenotypic landscape underlying 22q11.2 deletion syndrome3,4 genes in the adult mouse brain prefrontal cortex. We identified three 22q11.2-linked genes involved in known and previously undescribed pathways orchestrating neuronal functions in vivo that explain approximately 40% of the transcriptional changes observed in a 22q11.2-deletion mouse model. Our findings suggest that the 22q11.2-deletion syndrome transcriptional phenotype found in mature neurons may in part be due to the broad dysregulation of a class of genes associated with disease susceptibility that are important for dysfunctional RNA processing and synaptic function. Our study establishes a flexible and scalable direct in vivo method to facilitate causal understanding of biological and disease mechanisms with potential applications to identify genetic interventions and therapeutic targets for treating disease.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Edição de Genes , Estudos de Associação Genética , Análise de Célula Única , Transcrição Gênica , Animais , Humanos , Camundongos , Dependovirus/genética , Estudos de Associação Genética/métodos , Neurônios/metabolismo , Fenótipo , Córtex Pré-Frontal/metabolismo , Transcrição Gênica/genética , Análise de Célula Única/métodos , Sistemas CRISPR-Cas/genética , Síndrome de DiGeorge/tratamento farmacológico , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Processamento Pós-Transcricional do RNA , Sinapses/patologia , Predisposição Genética para Doença
2.
Cell Rep ; 38(7): 110381, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172154

RESUMO

Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , RNA não Traduzido/metabolismo , Animais , Proliferação de Células/genética , Reprogramação Celular/genética , Furões , Células HEK293 , Humanos , Ventrículos Laterais , Camundongos , MicroRNAs/genética , Mitose/genética , Neurogênese/genética , Neurônios/metabolismo , RNA não Traduzido/genética
3.
Nat Methods ; 16(9): 887-893, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406383

RESUMO

The ability to modify multiple genetic elements simultaneously would help to elucidate and control the gene interactions and networks underlying complex cellular functions. However, current genome engineering technologies are limited in both the number and the type of perturbations that can be performed simultaneously. Here, we demonstrate that both Cas12a and a clustered regularly interspaced short palindromic repeat (CRISPR) array can be encoded in a single transcript by adding a stabilizer tertiary RNA structure. By leveraging this system, we illustrate constitutive, conditional, inducible, orthogonal and multiplexed genome engineering of endogenous targets using up to 25 individual CRISPR RNAs delivered on a single plasmid. Our method provides a powerful platform to investigate and orchestrate the sophisticated genetic programs underlying complex cell behaviors.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes , Redes Reguladoras de Genes , Engenharia Genética , Genoma Humano , RNA Guia de Cinetoplastídeos/genética , Acidaminococcus/enzimologia , Endonucleases/genética , Células HEK293 , Humanos , Plasmídeos/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...