Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4520, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375384

RESUMO

The ability to predict and understand phases in high-entropy alloys (HEAs) is still being debated, and primarily true predictive capabilities derive from the known thermodynamics of materials. The present work demonstrates that prior work using high-throughput first-principles calculations may be further utilized to provide direct insight into the temperature- and composition-dependent phase evolution in HEAs, particularly Al-containing HEAs with a strengthening multiphase microstructure. Using a simple model with parameters derived from first-principles calculations, we reproduce the major features associated with Al-containing phases, demonstrating a generalizable approach for exploring potential phase evolution where little experimental data exists. Neutron scattering, in situ microscopy, and calorimetry measurements suggest that our high-throughput Monte Carlo technique captures both qualitative and quantitative features for both intermetallic phase formation and microstructure evolution at lower temperatures. This study provides a simple approach to guide HEA development, including ordered multi-phase HEAs, which may prove valuable for structural applications.

2.
Rev Sci Instrum ; 78(1): 013907, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17503933

RESUMO

An automated system for sample exchange and tracking in a cryogenic environment and under remote computer control was developed. Up to 24 sample "cans" per cycle can be inserted and retrieved in a programed sequence. A video camera acquires a unique identification marked on the sample can to provide a record of the sequence. All operations are coordinated via a LABVIEW program that can be operated locally or over a network. The samples are contained in vanadium cans of 6-10 mm in diameter and equipped with a hermetically sealed lid that interfaces with the sample handler. The system uses a closed-cycle refrigerator (CCR) for cooling. The sample was delivered to a precooling location that was at a temperature of approximately 25 K, after several minutes, it was moved onto a "landing pad" at approximately 10 K that locates the sample in the probe beam. After the sample was released onto the landing pad, the sample handler was retracted. Reading the sample identification and the exchange operation takes approximately 2 min. The time to cool the sample from ambient temperature to approximately 10 K was approximately 7 min including precooling time. The cooling time increases to approximately 12 min if precooling is not used. Small differences in cooling rate were observed between sample materials and for different sample can sizes. Filling the sample well and the sample can with low pressure helium is essential to provide heat transfer and to achieve useful cooling rates. A resistive heating coil can be used to offset the refrigeration so that temperatures up to approximately 350 K can be accessed and controlled using a proportional-integral-derivative control loop. The time for the landing pad to cool to approximately 10 K after it has been heated to approximately 240 K was approximately 20 min.


Assuntos
Automação , Nêutrons , Projetos de Pesquisa , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...