Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 18(1): 174-186, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34003570

RESUMO

US Environmental Protection Agency (USEPA) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures are based on the principle that metals toxicity to benthic organisms is determined by bioavailable metals concentrations in porewater. One ESB is based on the difference between simultaneously extracted metal (SEM) and acid volatile sulfide (AVS) concentrations in sediment (excess SEM). The excess SEM ESBs include a lower uncertainty bound, below which most samples (95%) are expected to be "nontoxic" (defined as a bioassay mortality rate ≤24%), and an upper uncertainty bound, above which most samples (95%) are expected to be "toxic" (defined as a mortality rate >24%). Samples that fall between the upper and lower bounds are classified as "uncertain." Excess SEM ESBs can, in principle, be improved by normalizing for organic carbon (OC). OC is a binding phase that reduces metals bioavailability. OC normalization should improve the accuracy of bioavailable metal concentration estimates, thus tightening uncertainty bounds. We evaluated field-collected sediments from 13 studies with excess SEM, OC, and bioassay data (n = 740). Use of the OC-normalized excess SEM benchmarks did not improve prediction accuracy. The ESB model predicts OC-normalized excess SEM exceeding the upper benchmark even when toxicity is not observed, because error in the OC normalization model increases at low OC concentrations. To minimize the likelihood of incorrectly identifying nontoxic samples as toxic, we recommend that OC normalization of excess SEM should not be considered for sediments with an OC concentration <1% and is questionable for sediments with an OC concentration of 1%-4%. Additional focused studies are needed to confirm or refine the minimum sediment OC concentrations that are applicable for reducing uncertainty in toxicity predictions due to excess SEM. Integr Environ Assess Manag 2022;18:174-186. © 2021 SETAC.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Benchmarking , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Estados Unidos , United States Environmental Protection Agency , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Integr Environ Assess Manag ; 18(5): 1321-1334, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34664778

RESUMO

The US Environmental Protection Agency Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc) equilibrium partitioning approach causally link metal concentrations and toxicological effects; they apply to sediment and porewater (i.e., interstitial water). The evaluation of bioavailable metal concentrations in porewater, using tools such as the biotic ligand model, provides an advancement that complements sediment-based evaluations. However, porewater characterization is less commonly performed in sediment bioassays than sediment chemistry characterization due to the difficulty and expense of porewater collection as well as concerns about interpretation of porewater data. This study discusses the advantages and disadvantages of different porewater extraction methods for analysis of metals and bioavailability parameters during laboratory sediment bioassays, with a focus on peepers and centrifugation. The purpose is to provide recommendations to generate bioassay porewater data of sufficient quality for use in risk-based decision-making, such as for regulated cleanup actions. Comparisons of paired data from previous bioassay studies indicate that metal porewater concentrations collected via centrifugation tend to be higher than those collected via peepers. However, centrifugation disrupts the redox status of the sediment; also, metal concentrations can vary markedly based on centrifugation conditions. Data to compare the concentrations of peeper- and centrifugation-collected bioavailability parameters (e.g., major ions, pH) are much more limited, but indicate smaller differences than those observed for metal concentrations. While peepers can be sampled without altering the redox status of the porewater, the small volume of porewater peepers collected is enough for metal concentration analysis, but insufficient for analysis of all metal bioavailability parameters. Given the benefits of metal collection via peepers, it is optimal to use centrifugation and peepers in tandem for bioassay porewater collection to improve bioavailability predictions. Environ Assess Manag 2022;18:1321-1334. © 2021 SETAC.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Bioensaio , Cobre/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais/análise , Metais/toxicidade , Poluentes Químicos da Água/análise
3.
Integr Environ Assess Manag ; 18(5): 1335-1347, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34953029

RESUMO

The equilibrium partitioning sediment benchmarks (ESBs) derived by the US Environmental Protection Agency (USEPA) in 2005 provide a mechanistic framework for understanding metal bioavailability in sediments by considering equilibrium partitioning (EqP) theory, which predicts that metal bioavailability in sediments is determined largely by partitioning to sediment particles. Factors that favor the partitioning of metals to sediment particles, such as the presence of acid volatile sulfide (AVS) and sediment organic matter, reduce metal bioavailability to benthic organisms. Because ESBs link metal bioavailability to partitioning to particles, they also predict that measuring metals in porewater can lead to a more accurate assessment of bioavailability and toxicity to benthic organisms. At the time of their development, sediment ESBs based on the analysis of porewater metal concentrations were limited to comparison with hardness-dependent metals criteria for the calculation of interstitial water benchmark units (IWBUs). However, the multimetal biotic ligand model (mBLM) provides a more comprehensive assessment of porewater metal concentrations, because it considers factors in addition to hardness, such as pH and dissolved organic carbon, and allows for interactions between metals. To evaluate the utility of the various sediment and porewater ESBs, four Hyalella azteca bioassay studies were identified that included sediment and porewater measurements of metals and porewater bioavailability parameters. Evaluations of excess simultaneously extracted metals, IWBUs, and mBLM toxic units (TUs) were compared among the bioassay studies. For porewater, IWBUs and mBLM TUs were calculated using porewater metal concentrations from samples collected using centrifugation and peepers. The percentage of correct predictions of toxicity was calculated for each benchmark comparison. The mBLM-based assessment using peeper data provided the most accurate predictions for the greatest number of samples among the evaluation methods considered. This evaluation demonstrates the value of porewater-based evaluations in conjunction with sediment chemistry in understanding toxicity observed in bioassay studies. Integr Environ Assess Manag 2022;18:1335-1347. © 2021 SETAC.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Benchmarking , Disponibilidade Biológica , Sedimentos Geológicos/química , Ligantes , Metais/análise , Metais/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-34352398

RESUMO

Dissolved organic carbon (DOC) is known to ameliorate the toxicity of the trace metal nickel (Ni) to aquatic animals. In theory, this effect is mediated by the capacity of DOC to bind Ni, rendering it less bioavailable, with the resulting reduction in accumulation limiting toxicological effects. However, there is a lack of experimental data examining Ni accumulation in marine settings with natural sources of DOC. In the current study, radiolabelled Ni was used to examine the time- and concentration-dependence of Ni accumulation, using naturally sourced DOC, on developing larvae of the sea urchin Strongylocentrotus purpuratus. Contrary to prediction, the two tested natural DOC samples (collected from the eastern United States, DOC 2 (Seaview park, Rhode Island (SVP)) and DOC 7 (Aubudon Coastal Center, Connecticut)) which had previously been shown to protect against Ni toxicity, did not limit accumulation. The control (artificial seawater with no added DOC), and the DOC 2 sample could mostly be described as having saturable Ni uptake, whereas Ni uptake in the presence of DOC 7 was mostly linear. These data provide evidence that DOC modifies the bioavailability of Ni, through either indirect effects (e.g. membrane permeability) or by the absorption of DOC-Ni complexes. There was some evidence for regulation of Ni accumulation in later-stage embryos (96-h) where the bioconcentration factor for Ni declined with increasing Ni exposure concentration. These data have implications for predictive modelling approaches that rely on known relationships between Ni speciation, bioavailability and bioreactivity, by suggesting that these relationships may not hold for natural marine DOC samples in the developing sea urchin model system.


Assuntos
Matéria Orgânica Dissolvida/farmacologia , Níquel/farmacocinética , Strongylocentrotus purpuratus/efeitos dos fármacos , Animais , Larva , Strongylocentrotus purpuratus/crescimento & desenvolvimento , Strongylocentrotus purpuratus/metabolismo , Poluentes Químicos da Água/farmacologia
5.
Environ Toxicol Chem ; 40(11): 3049-3062, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34297851

RESUMO

We studied biotic ligand model (BLM) predictions of the toxicity of nickel (Ni) and zinc (Zn) in natural waters from Illinois and Minnesota, USA, which had combinations of pH, hardness, and dissolved organic carbon (DOC) more extreme than 99.7% of waters in a nationwide database. We conducted 7-day chronic tests with Ceriodaphnia dubia and 96-hour acute and 14-day chronic tests with Neocloeon triangulifer and estimated median lethal concentrations and 20% effect concentrations for both species. Toxicity of Ni and Zn to both species differed among test waters by factors from 8 (Zn tests with C. dubia) to 35 (Zn tests with N. triangulifer). For both species and metals, tests with Minnesota waters (low pH and hardness, high DOC) showed lower toxicity than Illinois waters (high pH and high hardness, low DOC). Recalibration of the Ni BLM to be more responsive to pH-related changes improved predictions of Ni toxicity, especially for C. dubia. For the Zn BLM, we compared several input data scenarios, which generally had minor effects on model performance scores (MPS). A scenario that included inputs of modeled dissolved inorganic carbon and measured Al and Fe(III) produced the highest MPS values for tests with both C. dubia and N. triangulifer. Overall, the BLM framework successfully modeled variation in toxicity for both Zn and Ni across wide ranges of water chemistry in tests with both standard and novel test organisms. Environ Toxicol Chem 2021;40:3049-3062. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Cladocera , Ephemeroptera , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Compostos Férricos , Níquel/toxicidade , Compostos Orgânicos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
6.
Environ Toxicol Chem ; 40(8): 2121-2134, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945644

RESUMO

A review of nickel (Ni) toxicity to aquatic organisms was conducted to determine the primary water quality factors that affect Ni toxicity and to provide information for the development and testing of a biotic ligand model (BLM) for Ni. Acute and chronic data for 66 aquatic species were compiled for the present review. The present review found that dissolved organic carbon (DOC) and hardness act as toxicity-modifying factors (TMFs) because they reduced Ni toxicity to fish and aquatic invertebrates, and these effects were consistent in acute and chronic exposures. The effects of pH on Ni toxicity were inconsistent, and for most organisms there was either no effect of pH or, in some cases, a reduction in toxicity at low pH. There appears to be a unique pH effect on Ceriodaphnia dubia that results in increased toxicity at pHs above 8, but otherwise the effects of TMFs were consistent enough across all organisms and endpoints that a single set of parameters in the Ni BLM worked well with all acute and chronic toxicity data for fish, amphibians, aquatic invertebrates, and aquatic plants and algae. The unique effects of pH on C. dubia may be due to mixture toxicity involving both Ni and bicarbonate. The implications of this mixture effect on BLM modeling and a proposed set of BLM parameters for C. dubia are addressed in the review. Other than this exception, the Ni BLM with a single set of parameters could successfully predict toxicity to all acute and chronic data compiled in the present review. Environ Toxicol Chem 2021;40:2121-2134. © 2021 SETAC.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Animais , Organismos Aquáticos , Disponibilidade Biológica , Peixes , Água Doce/química , Invertebrados , Ligantes , Níquel/toxicidade , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
7.
Environ Toxicol Chem ; 40(8): 2189-2205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33847411

RESUMO

Toxicity-modifying factors can be modeled either empirically with linear regression models or mechanistically, such as with the biotic ligand model (BLM). The primary factors affecting the toxicity of nickel to aquatic organisms are hardness, dissolved organic carbon (DOC), and pH. Interactions between these terms were also considered. The present study develops multiple linear regressions (MLRs) with stepwise regression for 5 organisms in acute exposures, 4 organisms in chronic exposures, and pooled models for acute, chronic, and all data and compares the performance of the Pooled All MLR model to the performance of the BLM. Independent validation data were used for evaluating model performance, which for pooled models included data for organisms and endpoints not present in the calibration data set. Hardness and DOC were most often selected as the explanatory variables in the MLR models. An attempt was also made at evaluating the uncertainty of the predictions for each model; predictions that showed the most error tended to show the highest levels of uncertainty as well. The performances of the 2 models were largely equal, with differences becoming more apparent when looking at the performance within subsets of the data. Environ Toxicol Chem 2021;40:2189-2205. © 2021 SETAC.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Água Doce/química , Ligantes , Modelos Lineares , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade
8.
Environ Toxicol Chem ; 40(6): 1649-1661, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33590908

RESUMO

An increasing number of metal bioavailability models are available for use in setting regulations and conducting risk assessments in aquatic systems. Selection of the most appropriate model is dependent on the user's needs but will always benefit from an objective, comparative assessment of the performance of available models. In 2017, an expert workshop developed procedures for assessing metal bioavailability models. The present study applies these procedures to evaluate the performance of biotic ligand models (BLMs) and multiple linear regression (MLR) models for copper. We find that the procedures recommended by the expert workshop generally provide a robust series of metrics for evaluating model performance. However, we recommend some modifications to the analysis of model residuals because the current method is insensitive to relatively large differences in residual patterns when comparing models. We also provide clarification on details of the evaluation procedure which, if not applied correctly, could mischaracterize model performance. We found that acute Cu MLR and BLM performances are quite comparable, though there are differences in performance on a species-specific basis and in the resulting water quality criteria as a function of water chemistry. In contrast, the chronic Cu MLR performed distinctly better than the BLM. Observed differences in performance are due to the smaller effects of hardness and pH on chronic Cu toxicity compared to acute Cu toxicity. These differences are captured in the chronic MLR model but not the chronic BLM, which only adjusts for differences in organism sensitivity. In general, we continue to recommend concurrent development of both modeling approaches because they provide useful comparative insights into the strengths, limitations, and predictive capabilities of each model. Environ Toxicol Chem 2021;40:1649-1661. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cobre , Poluentes Químicos da Água , Disponibilidade Biológica , Cobre/toxicidade , Água Doce/química , Ligantes , Modelos Lineares , Poluentes Químicos da Água/toxicidade
9.
Environ Toxicol Chem ; 39(1): 60-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31880840

RESUMO

Since the early 2000s, biotic ligand models and related constructs have been a dominant paradigm for risk assessment of aqueous metals in the environment. We critically review 1) the evidence for the mechanistic approach underlying metal bioavailability models; 2) considerations for the use and refinement of bioavailability-based toxicity models; 3) considerations for the incorporation of metal bioavailability models into environmental quality standards; and 4) some consensus recommendations for developing or applying metal bioavailability models. We note that models developed to date have been particularly challenged to accurately incorporate pH effects because they are unique with multiple possible mechanisms. As such, we doubt it is ever appropriate to lump algae/plant and animal bioavailability models; however, it is often reasonable to lump bioavailability models for animals, although aquatic insects may be an exception. Other recommendations include that data generated for model development should consider equilibrium conditions in exposure designs, including food items in combined waterborne-dietary matched chronic exposures. Some potentially important toxicity-modifying factors are currently not represented in bioavailability models and have received insufficient attention in toxicity testing. Temperature is probably of foremost importance; phosphate is likely important in plant and algae models. Acclimation may result in predictions that err on the side of protection. Striking a balance between comprehensive, mechanistically sound models and simplified approaches is a challenge. If empirical bioavailability tools such as multiple-linear regression models and look-up tables are employed in criteria, they should always be informed qualitatively and quantitatively by mechanistic models. If bioavailability models are to be used in environmental regulation, ongoing support and availability for use of the models in the public domain are essential. Environ Toxicol Chem 2019;39:60-84. © 2019 SETAC.


Assuntos
Monitoramento Ambiental , Metais/metabolismo , Modelos Biológicos , Poluentes Químicos da Água/metabolismo , Animais , Disponibilidade Biológica , Congressos como Assunto , Monitoramento Ambiental/legislação & jurisprudência , Monitoramento Ambiental/métodos , Ligantes , Metais/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
11.
Integr Environ Assess Manag ; 15(6): 974-987, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31218828

RESUMO

A large water quality data set, representing more than 100 surface-water locations sampled from 2007 to 2017 in the Los Alamos area of New Mexico, USA's Pajarito Plateau, was assembled to evaluate Al concentrations in unfiltered and filtered samples. Aluminum concentrations often exceeded United States Environmental Protection Agency (USEPA) and New Mexico ambient water quality criteria (AWQC), regardless of filter size and sample location. However, AWQC are based on laboratory toxicity studies using soluble Al salts and do not reflect natural conditions in Pajarito Plateau surface waters. The plateau is predominately covered by glassy and recrystallized volcanic ashes (e.g., Bandelier Tuff) containing colloidal to sand-sized aluminosilicates. Samples from natural background drainages and areas downstream of developed regions exhibited similar Al concentrations, suggesting that AWQC exceedances are caused by naturally elevated Al concentrations. Solubility calculations indicated that most samples were oversaturated with respect to amorphous Al(OH)3 (s). Therefore, AWQC exceedances are likely artifacts of the "total recoverable" sample preparation, which includes acidification and partial digestion, thereby liberating nonbioavailable Al from aluminosilicates. Accordingly, Al concentrations were strongly associated with suspended sediment concentrations (SSCs), implying that aluminosilicates in suspended sediment contributed to AWQC exceedances and Al oversaturation. Solid-phase particle characterization, using X-ray diffraction (XRD) and scanning electron microscopy with electron dispersive spectroscopy (SEM/EDS) did not identify potentially bioavailable amorphous Al(OH)3 (s) in any sample tested. Thus, current sample collection and analysis protocols should not be used to evaluate attainment of Al AWQC on the Pajarito Plateau or locations where aluminosilicates are substantial contributors to total recoverable Al. A sample preparation method (e.g., pH 4 extraction) capable of differentiating nonbioavailable and bioavailable forms of Al is recommended. Otherwise, current New Mexico and USEPA sample preparation approaches will continue to generate artifactual AWQC exceedances in surface waters that contain aluminosilicates. Integr Environ Assess Manag 2019;00:1-14. © 2019 SETAC.


Assuntos
Compostos de Alumínio/análise , Alumínio/análise , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água/normas , New Mexico
12.
Integr Environ Assess Manag ; 15(3): 437-447, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30609308

RESUMO

Since the mid-1970s, thousands of studies have evaluated the toxicity of various chemicals to aquatic organisms. Results from many of these studies have been used to develop species sensitivity distributions (SSDs) or genus sensitivity distributions (GSDs) for deriving water quality guidelines. Recently, there has been more emphasis on evaluating the toxicity of chemicals to sensitive organisms rather than the entire range of sensitivities. The SSD approach is intended to inform the derivation of guidelines for the protection of all species, not just those that were included in the SSD. The overemphasis of the more sensitive end of the SSD can contribute to a skew in the observed distribution such that the shape of the distribution is distorted from what it would be if all species could be tested, which ultimately affects the derived guideline value. The freshwater acute Cu GSD derived by the US Environmental Protection Agency (USEPA) is one that exemplifies this trend, with one-third of the genera in the GSD belonging to only 3 taxonomic families, all of which are nearer to the sensitive end of the distribution. The stronger representation of the more sensitive families does not seem to mirror the overall abundance of species within those families in nature. This tendency toward testing sensitive organisms is not seen in the chronic Cu SSD. In the present study, Cu toxicity literature is reviewed and long-term trends in the availability of toxicity information for species of varying sensitivity are examined. As part of the present review, the apparent bias that favors the publication of toxicity data for sensitive taxa is demonstrated, and implications for the representativeness of SSDs and their use in developing water quality guidelines are discussed. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cobre/toxicidade , Peixes , Invertebrados/efeitos dos fármacos , Plantas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Animais , Água Doce , Especificidade da Espécie
13.
Integr Environ Assess Manag ; 14(6): 722-735, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29920938

RESUMO

In 2007, the Biotic Ligand Model (BLM) became the basis for the US Environmental Protection Agency (USEPA) freshwater water quality criteria (WQC) for Cu. Applying the BLM typically results in time-variable WQC, which are not unique to the BLM; they result from any criteria approach that depends on water chemistry (e.g., ammonia criteria or hardness-based equations for metals). However, widespread use of the BLM has renewed interest in developing an approach that considers variability when setting permit limits or benchmarks. To aid in establishing these benchmarks, we developed a fixed monitoring benchmark (FMB) approach: a probability-based method that incorporates time variability in BLM-predicted instantaneous water quality criteria (IWQC) and instream Cu concentrations. The FMB approach provides benchmarks that can be used to simplify implementation of time-variable WQC. Although it appears reasonable to apply this approach to derive a site-specific regulatory limit, the FMB does not technically represent a limit above which aquatic effects are expected. Rather, it represents a fixed concentration intended to yield the same level of protection as time-variable IWQC, which rely upon toxic unit (TU) distribution; each TU is calculated for a single sample using the Cu concentration and IWQC for this sample. The distribution of TUs for a particular site is used to estimate the probability that instream Cu concentrations are below associated IWQC. Our results suggest that Cu variability and corresponding IWQC, and their degree of correlation, indicate the magnitude of the FMB relative to the IWQC distribution. The FMB approach determines a maximum Cu distribution such that the resulting WQC exceedance frequency is consistent with the level of protection that is intended for the applicable water quality standard (WQS). This approach makes use of time-variable BLM-based WQC in regulatory contexts wherein a single benchmark is consistent with past practices and established implementation methods. Integr Environ Assess Manag 2018;14:722-735. © 2018 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Modelos Químicos , Poluentes Químicos da Água/análise , Benchmarking , Ligantes , Poluentes Químicos da Água/normas , Qualidade da Água
14.
Environ Toxicol Chem ; 37(6): 1515-1522, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29442368

RESUMO

There is concern over whether regulatory criteria for copper (Cu) are protective against chemosensory and behavioral impairment in aquatic organisms. We compiled Cu toxicity data for these and other sublethal endpoints in 35 tests with saltwater organisms and compared the Cu toxicity thresholds with biotic ligand model (BLM)-based estimated chronic limits (ECL values, which are 20% effect concentrations [EC20s] for the embryo-larval life stage of the blue mussel [Mytilus edulis], a saltwater species sensitive to Cu that has historically been used to derive saltwater Cu criteria). Only 8 of the 35 tests had sufficient toxicity and chemistry data to support unequivocal conclusions (i.e., a Cu EC20 or no-observed-effect concentration could be derived, and Cu and dissolved organic carbon [DOC] concentrations were measured [or DOC concentrations could be inferred from the test-water source]). The BLM-based ECL values would have been protective (i.e., the ECL was lower than the toxicity threshold) in 7 of those 8 tests. In the remaining 27 tests, this meta-analysis was limited by several factors, including 1) the Cu toxicity threshold was a "less than" value in 19 tests because only a lowest-observed-effect concentration could be calculated and 2) Cu and/or DOC concentrations often were not measured. In 2 of those 27 tests, the ECL would not have been protective if based only on a conservatively high upper-bound DOC estimate. To facilitate future evaluations of the protectiveness of aquatic life criteria for metals, we urge researchers to measure and report exposure-water chemistry and test-metal concentrations that bracket regulatory criteria. Environ Toxicol Chem 2018;37:1515-1522. © 2018 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Cobre/toxicidade , Olfato/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ligantes , Mytilus edulis/efeitos dos fármacos , Salmonidae , Água do Mar , Testes de Toxicidade Crônica
15.
Environ Toxicol Chem ; 37(1): 49-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833434

RESUMO

Although it is well known that increasing water hardness and dissolved organic carbon (DOC) concentrations mitigate the toxicity of aluminum (Al) to freshwater organisms in acidic water (i.e., pH < 6), these effects are less well characterized in natural waters at circumneutral pHs for which most aquatic life regulatory protection criteria apply (i.e., pH 6-8). The evaluation of Al toxicity under varying pH conditions may also be confounded by the presence of Al hydroxides and freshly precipitated Al in newly prepared test solutions. Aging and filtration of test solutions were found to greatly reduce toxicity, suggesting that toxicity from transient forms of Al could be minimized and that precipitated Al hydroxides contribute significantly to Al toxicity under circumneutral conditions, rather than dissolved or monomeric forms. Increasing pH, hardness, and DOC were found to have a protective effect against Al toxicity for fish (Pimephales promelas) and invertebrates (Ceriodaphnia dubia, Daphnia magna). For algae (Pseudokirchneriella subcapitata), the protective effects of increased hardness were only apparent at pH 6, less so at pH 7, and at pH 8, increased hardness appeared to increase the sensitivity of algae to Al. The results support the need for water quality-based aquatic life protection criteria for Al, rather than fixed value criteria, as being a more accurate predictor of Al toxicity in natural waters. Environ Toxicol Chem 2018;37:49-60. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Carbono/análise , Água Doce , Compostos Orgânicos/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Cladocera/fisiologia , Cyprinidae/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Dureza , Concentração de Íons de Hidrogênio , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologia , Solubilidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Qualidade da Água
16.
Bull Environ Contam Toxicol ; 100(1): 69-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29279993

RESUMO

The acute toxicity of silver to Ceriodaphnia dubia was investigated in laboratory reconstituted waters as well as in natural waters and reconstituted waters with natural organic matter. The water quality characteristics of the laboratory reconstituted waters were systematically varied. The parameters that demonstrated an ability to mitigate the acute toxic effects of silver were chloride, sodium, organic carbon, and chromium reducible sulfide. Factors that did not have a consistent effect on the acute toxicity of silver to C. dubia, at least over the range of conditions tested, included hardness, alkalinity, and pH. The biotic ligand model was calibrated to the observed test results and found to be of use in quantifying the effect of changing water quality characteristics on silver bioavailability and toxicity. The model generally predicted silver toxicity within a factor of two and should be useful in modifying water quality criteria.


Assuntos
Cladocera/fisiologia , Água Doce/química , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cloretos , Cladocera/efeitos dos fármacos , Sódio , Testes de Toxicidade Aguda , Qualidade da Água/normas
17.
Environ Toxicol Chem ; 37(1): 70-79, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080370

RESUMO

Aluminum (Al) toxicity to aquatic organisms is strongly affected by water chemistry. Toxicity-modifying factors such as pH, dissolved organic carbon (DOC), hardness, and temperature have a large impact on the bioavailability and toxicity of Al to aquatic organisms. The importance of water chemistry on the bioavailability and toxicity of Al suggests that interactions between Al and chemical constituents in exposures to aquatic organisms can affect the form and reactivity of Al, thereby altering the extent to which it interacts with biological membranes. These types of interactions have previously been observed in the toxicity data for other metals, which have been well described by the biotic ligand model (BLM) framework. In BLM applications to other metals (including cadmium, cobalt, copper, lead, nickel, silver, and zinc), these interactions have focused on dissolved metal. A review of Al toxicity data shows that concentrations of Al that cause toxicity are frequently in excess of solubility limitations. Aluminum solubility is strongly pH dependent, with a solubility minimum near pH 6 and increasing at both lower and higher pH values. For the Al BLM, the mechanistic framework has been extended to consider toxicity resulting from a combination of dissolved and precipitated Al to recognize the solubility limitation. The resulting model can effectively predict toxicity to fish, invertebrates, and algae over a wide range of conditions. Environ Toxicol Chem 2018;37:70-79. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Modelos Teóricos , Testes de Toxicidade Crônica , Animais , Organismos Aquáticos/efeitos dos fármacos , Precipitação Química , Peixes/fisiologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Substâncias Húmicas/análise , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologia , Ligantes , Solubilidade , Água/química , Poluentes Químicos da Água/toxicidade
18.
Environ Toxicol Chem ; 37(1): 36-48, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667768

RESUMO

The chemistry, bioavailability, and toxicity of aluminum (Al) in the aquatic environment are complex and affected by a wide range of water quality characteristics (including pH, hardness, and dissolved organic carbon). Data gaps in Al ecotoxicology exist for pH ranges representative of natural surface waters (pH 6-8). To address these gaps, a series of chronic toxicity tests were performed at pH 6 with 8 freshwater species, including 2 fish (Pimephales promelas and Danio rerio), an oligochaete (Aeolosoma sp.), a rotifer (Brachionus calyciflorus), a snail (Lymnaea stagnalis), an amphipod (Hyalella azteca), a midge (Chironomus riparius), and an aquatic plant (Lemna minor). The 10% effect concentrations (EC10s) ranged from 98 µg total Al/L for D. rerio to 2175 µg total Al/L for L. minor. From these data and additional published data, species-sensitivity distributions (SSDs) were developed to derive concentrations protective of 95% of tested species (i.e., 50% lower confidence limit of a 5th percentile hazard concentration [HC5-50]). A generic HC5-50 (not adjusted for bioavailability) of 74.4 µg total Al/L was estimated using the SSD. An Al-specific biotic ligand model (BLM) was used to develop SSDs normalized for bioavailability based on site-specific water quality characteristics. Normalized HC5-50s ranged from 93.7 to 534 µg total Al/L for waters representing a range of European ecoregions, whereas a chronic HC5 calculated using US Environmental Protection Agency aquatic life criteria methods (i.e., a continuous criterion concentration [CCC]) was 125 µg total Al/L when normalized to Lake Superior water in the United States. The HC5-50 and CCC values for site-specific waters other than those in the present study can be obtained using the Al BLM. Environ Toxicol Chem 2018;37:36-48. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Água Doce , Testes de Toxicidade Crônica , Animais , Organismos Aquáticos/efeitos dos fármacos , Disponibilidade Biológica , Concentração de Íons de Hidrogênio , Padrões de Referência , Poluentes Químicos da Água/toxicidade , Qualidade da Água
19.
Environ Toxicol Chem ; 36(11): 2965-2973, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28636272

RESUMO

The US Environmental Protection Agency's (USEPA's) current ambient water quality criteria (AWQC) for lead (Pb) in freshwater were developed in 1984. The criteria are adjusted for hardness, but more recent studies have demonstrated that other parameters, especially dissolved organic carbon (DOC) and pH, have a much stronger influence on Pb bioavailability. These recent studies have been used to support development of a biotic ligand model (BLM) for Pb in freshwater, such that acute and chronic Pb toxicity can be predicted over a wide range of water chemistry conditions. Following USEPA guidelines for AWQC development and using a methodology consistent with that used by the USEPA in developing its recommended BLM-based criteria for copper in 2007, we propose acute and chronic BLM-based AWQC for Pb in freshwater. In addition to the application of the BLM approach that can better account for site-specific Pb bioavailability, the toxicity data sets presented are much more robust than in 1984, and there are now sufficient chronic Pb toxicity data available that use of an acute-to-chronic ratio is no longer necessary. Over a range of North American surface waters with representative water chemistry conditions, proposed acute BLM-based Pb criteria ranged from approximately 20 to 1000 µg/L and chronic BLM-based Pb criteria ranged from approximately 0.3 to 40 µg/L. The lowest criteria were for water with low DOC (1.2 mg/L), pH (6.7), and hardness (4.3 mg/L as CaCO3), whereas the highest criteria were for water with high DOC (9.8 mg/L), pH (8.2), and hardness (288 mg/L as CaCO3 ). Environ Toxicol Chem 2017;36:2965-2973. © 2017 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Água Doce , Guias como Assunto , Chumbo/toxicidade , Modelos Teóricos , Testes de Toxicidade Aguda , United States Environmental Protection Agency , Animais , Carbonato de Cálcio , Ligantes , Testes de Toxicidade Crônica , Estados Unidos , Poluentes Químicos da Água/toxicidade , Qualidade da Água
20.
Environ Toxicol Chem ; 34(4): 777-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25556972

RESUMO

A multimetal, multiple binding site version of the biotic ligand model (mBLM) has been developed for predicting and explaining the bioavailability and toxicity of mixtures of metals to aquatic organisms. The mBLM was constructed by combining information from single-metal BLMs to preserve compatibility between the single-metal and multiple-metal approaches. The toxicities from individual metals were predicted by assuming additivity of the individual responses. Mixture toxicity was predicted based on both dissolved metal and mBLM-normalized bioavailable metal. Comparison of the 2 prediction methods indicates that metal mixtures frequently appear to have greater toxicity than an additive estimation of individual effects on a dissolved metal basis. However, on an mBLM-normalized basis, mixtures of metals appear to be additive or less than additive. This difference results from interactions between metals and ligands in solutions including natural organic matter, processes that are accounted for in the mBLM. As part of the mBLM approach, a technique for considering variability was developed to calculate confidence bounds (called response envelopes) around the central concentration-response relationship. Predictions using the mBLM and response envelope were compared with observed toxicity for a number of invertebrate and fish species. The results show that the mBLM is a useful tool for considering bioavailability when assessing the toxicity of metal mixtures.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Metais/toxicidade , Microbiota/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Daphnia , Relação Dose-Resposta a Droga , Peixes , Invertebrados , Ligantes , Modelos Biológicos , Oncorhynchus mykiss , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...