Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Nat Commun ; 15(1): 8214, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294175

RESUMO

CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.


Assuntos
Neoplasias da Mama , Matriz Extracelular , Ferroptose , Transdução de Sinais , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Humanos , Ferroptose/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Animais , Feminino , Matriz Extracelular/metabolismo , Camundongos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Regulação Neoplásica da Expressão Gênica
2.
Cell Metab ; 36(9): 1945-1962, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39232280

RESUMO

Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , Humanos , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Redes e Vias Metabólicas , Processamento Pós-Transcricional do RNA
3.
Environ Pollut ; 358: 124471, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950846

RESUMO

Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 µm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 µm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Brônquios , Metilação de DNA , Células Epiteliais , Material Particulado , Humanos , Células Epiteliais/metabolismo , Poluentes Atmosféricos/toxicidade , Brônquios/citologia , Regiões Promotoras Genéticas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Expressão Gênica/efeitos dos fármacos , Citocromo P-450 CYP1B1/genética , Linhagem Celular
4.
Zebrafish ; 21(4): 275-278, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963004

RESUMO

The 4th Italian Zebrafish Meeting took place in Palermo from February 7 to 9, 2024. The primary aim of this meeting was to bring together a diverse group of principal investigators, young researchers, facility managers, commercial vendors, and others to provide an important forum for presentation and discussion of the most innovative and exciting scientific research currently ongoing in Italy using the zebrafish model. Nonetheless, the meeting program has been conceived to allow the dissemination of cutting-edge scientific research across a wide range of topics and to shed light on its future directions, without geographical boundaries. Indeed, people from various parts of the world joined the meeting, and 210 participants presented their latest work in talks and posters. Importantly, the meeting had designated time to foster open scientific exchange and informal networking opportunities among participants of all career stages, thus allowing initiation of new collaborations and strengthening of existing partnerships. The meeting was a tremendous success as testified by the highest participation ever since the first meeting of the series in 2017, coupled with the highly positive satisfaction rating expressed by the attendants. The full program and detailed information about the meeting can be found on the dedicated website at https://itazebrafishmeeting.wixsite.com/izm2024.


Assuntos
Peixe-Zebra , Animais , Itália , Modelos Animais , Sicília
5.
Trends Cancer ; 10(6): 541-556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580535

RESUMO

Metastasis has a major part in the severity of disease and lethality of cancer. Circulating tumour cells (CTCs) represent a reservoir of metastatic precursors in circulation, most of which cannot survive due to hostile conditions in the bloodstream. Surviving cells colonise a secondary site based on a combination of physical, metabolic, and oxidative stress protection states required for that environment. Recent advances in CTC isolation methods and high-resolution 'omics technologies are revealing specific metabolic pathways that support this selection of CTCs. In this review, we discuss recent advances in our understanding of CTC biology and discoveries of adaptations in metabolic pathways during their selection. Understanding these traits and delineating mechanisms by which they confer acquired resistance or vulnerability in CTCs is crucial for developing successful prognostic and therapeutic strategies in cancer.


Assuntos
Neoplasias , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Redes e Vias Metabólicas , Estresse Oxidativo , Metástase Neoplásica , Prognóstico
7.
JCO Precis Oncol ; 7: e2300052, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535881

RESUMO

PURPOSE: We analyzed the oncogenic potential of RET Δ898-901 mutant and its response to selpercatinib, vandetanib, and cabozantinib in vitro and in a clinical case. MATERIALS AND METHODS: A 35-year-old man with a medullary thyroid cancer (MTC) harboring a somatic D898_E901 RET deletion was sequentially treated with vandetanib, selpercatinib, cabozantinib, and fluorouracil (5-FU)-dacarbazine. Functional study of RET Δ898-901 mutant was performed in HEK-293T, NIH-3T3, and Ba/F3 cells. RET C634R and wild-type cells served as positive and negative controls, respectively. RESULTS: The patient showed primary resistance to vandetanib and secondary resistance to selpercatinib after 12 months. Comprehensive next-generation sequencing of a progressing lesion during selpercatinib showed no additional RET mutation but an acquired complete genetic loss of CDKN2A, CDKN2B, and MTAP genes. Subsequent treatment with cabozantinib and 5-FU-dacarbazine had poor efficacy. In vitro, RET Δ898-901 showed higher ligand-independent RET autophosphorylation compared with RET C634R and similar proliferation rates in cell models. Subcutaneous injection of Δ898-901 NIH 3T3 cells in nude mice produced tumors of around 500 mm3 in 2 weeks, similarly to RET C634R cells. Selpercatinib inhibited cell growth of Ba/F3 RET Δ898-901 and RET C634R with a similar half maximal inhibitory concentration (IC50) of approximately 3 nM. Vandetanib was five-fold less effective at inhibiting cell growth promoted by RET Δ898-901 mutant (IC50, 564 nM) compared with RET C634R one (IC50, 91 nM). Cabozantinib efficiently inhibited Ba/F3 RET C634 proliferation (IC50, 25.9 nM), but was scarcely active in Ba/F3 RET 898-901 (IC50 > 1,350 nM). CONCLUSION: D898_E901 RET deletion is a gain-of-function mutation and responds to tyrosine kinase inhibitors in MTC. RET Δ898-901 mutant is sensitive to selpercatinib and vandetanib, and acquired resistance to selpercatinib may develop via RET-independent mechanisms.


Assuntos
Proteínas Proto-Oncogênicas c-ret , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-ret/genética , Camundongos Nus , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Piperidinas/uso terapêutico , Fluoruracila , Dacarbazina/uso terapêutico
8.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446317

RESUMO

BACKGROUND: Sporadic inclusion body myositis (s-IBM) represents a unique disease within idiopathic inflammatory myopathies with a dual myodegenerative-autoimmune physiopathology and a lack of an efficacious treatment. Circulating miRNA expression could expand our knowledge of s-IBM patho-mechanisms and provide new potential disease biomarkers. To evaluate the expression of selected pre-amplified miRNAs in the serum of s-IBM patients compared to those of a sex- and age-matched healthy control group, we enrolled 14 consecutive s-IBM patients and 8 sex- and age-matched healthy controls. By using two different normalization approaches, we found one downregulated and three upregulated miRNAs. hsa-miR-192-5p was significantly downregulated, while hsa-miR-372-3p was found to be upregulated more in the s-IBM patients compared to the level of the controls. The other two miRNAs had a very low expression levels (raw Ct data > 29). hsa-miR-192-5p and hsa-miR-372-3p were found to be significantly dysregulated in the serum of s-IBM patients. These miRNAs are involved in differentiation and regeneration processes, thus possibly reflecting pathological mechanisms in s-IBM muscles and potentially representing disease biomarkers.


Assuntos
MicroRNA Circulante , MicroRNAs , Miosite de Corpos de Inclusão , Miosite , Humanos , MicroRNA Circulante/genética , Miosite de Corpos de Inclusão/genética , MicroRNAs/metabolismo , Biomarcadores
9.
Cell Metab ; 35(7): 1093-1095, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437542

RESUMO

The metabolic mechanisms supporting the process of endothelial-to-mesenchymal transition (EndMT) remain largely unknown. Here, Zhu et al. describe a novel role for acetate and ACC2 in regulating EndMT and atherosclerosis via modulation of the TGF-ß signaling. This study sheds light on the role of glucose-derived metabolites that drive endothelial pathophysiology.


Assuntos
Acetatos , Aterosclerose , Glucose , Fator de Crescimento Transformador beta , Humanos , Acetatos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
10.
Sci Total Environ ; 895: 165059, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353034

RESUMO

During the early stage of the COVID-19 pandemic (winter 2020), the northern part of Italy has been significantly affected by viral infection compared to the rest of the country leading the scientific community to hypothesize that airborne particulate matter (PM) could act as a carrier for the SARS-CoV-2. To address this controversial issue, we first verified and demonstrated the presence of SARS-CoV-2 RNA genome on PM2.5 samples, collected in the city of Bologna (Northern Italy) in winter 2021. Then, we employed classical molecular dynamics (MD) simulations to investigate the possible recognition mechanism(s) between a newly modelled PM2.5 fragment and the SARS-CoV-2 Spike protein. The potential molecular interaction highlighted by MD simulations suggests that the glycans covering the upper Spike protein regions would mediate the direct contact with the PM2.5 carbon core surface, while a cloud of organic and inorganic PM2.5 components surround the glycoprotein with a network of non-bonded interactions resulting in up to 4769 total contacts. Moreover, a binding free energy of -207.2 ± 3.9 kcal/mol was calculated for the PM-Spike interface through the MM/GBSA method, and structural analyses also suggested that PM attachment does not alter the protein conformational dynamics. Although the association between the PM and SARS-CoV-2 appears plausible, this simulation does not assess whether these established interactions are sufficiently stable to carry the virus in the atmosphere, or whether the virion retains its infectiousness after the transport. While these key aspects should be verified by further experimental analyses, for the first time, this pioneering study gains insights into the molecular interactions between PM and SARS-CoV-2 Spike protein and will support further research aiming at clarifying the possible relationship between PM abundance and the airborne diffusion of viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Material Particulado/análise , Pandemias , RNA Viral , Simulação de Dinâmica Molecular
11.
STAR Protoc ; 4(2): 102232, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37071530

RESUMO

Hind limb ischemia is a useful model to assess metabolic and cellular responses. Here, we present a protocol for evaluating post-natal angiogenesis in a mouse hind limb ischemia model. We describe steps to induce a severe restriction of blood supply of the femoral artery and vein that mimics the real-life scenario observed in clinical settings. We then detail procedures for follow-up laser Doppler imaging to compare post-ischemic responses of four different mouse strains in their capacity to trigger compensatory arteriogenesis. For complete details on the use and execution of this protocol, please refer to Oberkersch et al. (2022).1.

12.
Cardiovasc Res ; 119(10): 1952-1968, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37052172

RESUMO

AIMS: The circadian clock is an internal biological timer that co-ordinates physiology and gene expression with the 24-h solar day. Circadian clock perturbations have been associated to vascular dysfunctions in mammals, and a function of the circadian clock in angiogenesis has been suggested. However, the functional role of the circadian clock in endothelial cells (ECs) and in the regulation of angiogenesis is widely unexplored. METHODS AND RESULTS: Here, we used both in vivo and in vitro approaches to demonstrate that ECs possess an endogenous molecular clock and show robust circadian oscillations of core clock genes. By impairing the EC-specific function of the circadian clock transcriptional activator basic helix-loop-helix ARNT like 1 (BMAL1) in vivo, we detect angiogenesis defects in mouse neonatal vascular tissues, as well as in adult tumour angiogenic settings. We then investigate the function of circadian clock machinery in cultured EC and show evidence that BMAL and circadian locomotor output cycles protein kaput knock-down impair EC cell cycle progression. By using an RNA- and chromatin immunoprecipitation sequencing genome-wide approaches, we identified that BMAL1 binds the promoters of CCNA1 and CDK1 genes and controls their expression in ECs. CONCLUSION(S): Our findings show that EC display a robust circadian clock and that BMAL1 regulates EC physiology in both developmental and pathological contexts. Genetic alteration of BMAL1 can affect angiogenesis in vivo and in vitro settings.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/genética , Células Endoteliais/metabolismo , Regiões Promotoras Genéticas , Ciclo Celular , Mamíferos/genética , Mamíferos/metabolismo
13.
Methods Mol Biol ; 2572: 191-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36161418

RESUMO

The use of transgenic animals carrying exogenous DNA integrated in their genome is a routine in modern-day laboratories. Nowadays, the zebrafish system represents the most useful tool for transgenesis studies mainly due to easy accessibility and manipulation of the eggs, which are produced in high numbers and over a relatively short generation time. The zebrafish transgenic technology is very straightforward when coupled with angiogenesis studies allowing easy in vivo observation of the vertebrate embryonic vasculature. Here, we describe the most common technique to generate vascular-labelled transgenic zebrafish embryos and their applications to study tumor angiogenesis and visualize tumor extravasation.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Animais Geneticamente Modificados , DNA , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/genética , Peixe-Zebra/genética
15.
Toxics ; 10(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36287897

RESUMO

Aviation is one of the sectors affecting climate change, and concerns have been raised over the increase in the number of flights all over the world. To reduce the climate impact, efforts have been dedicated to introducing biofuel blends as alternatives to fossil fuels. Here, we report environmentally relevant data on the emission factors of biofuel/fossil fuel blends (from 13 to 17% v/v). Moreover, in vitro direct exposure of human bronchial epithelial cells to the emissions was studied to determine their potential intrinsic hazard and to outline relevant lung doses. The results show that the tested biofuel blends do not reduce the emissions of particles and other chemical species compared to the fossil fuel. The blends do reduce the elemental carbon (less than 40%) and total volatile organic compounds (less than 30%) compared to fossil fuel emissions. The toxicological outcomes show an increase in oxidative cellular response after only 40 min of exposure, with biofuels causing a lower response compared to fossil fuels, and lung-deposited doses show differences among the fuels tested. The data reported provide evidence of the possibility to reduce the climate impact of the aviation sector and contribute to the risk assessment of biofuels for aviation.

16.
Cell Rep ; 40(7): 111207, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977492

RESUMO

Iron is essential for deoxyribonucleotides production and for enzymes containing an Fe-S cluster involved in DNA replication and repair. How iron bioavailability and DNA metabolism are coordinated remains poorly understood. NCOA4 protein mediates autophagic degradation of ferritin to maintain iron homeostasis and inhibits DNA replication origin activation via hindrance of the MCM2-7 DNA helicase. Here, we show that iron deficiency inhibits DNA replication, parallel to nuclear NCOA4 stabilization. In iron-depleted cells, NCOA4 knockdown leads to unscheduled DNA synthesis, with replication stress, genome instability, and cell death. In mice, NCOA4 genetic inactivation causes defective intestinal regeneration upon dextran sulfate sodium-mediated injury, with DNA damage, defective cell proliferation, and cell death; in intestinal organoids, this is fostered by iron depletion. In summary, we describe a NCOA4-dependent mechanism that coordinates iron bioavailability and DNA replication. This function prevents replication stress, maintains genome integrity, and sustains high rates of cell proliferation during tissue regeneration.


Assuntos
Ferro , Coativadores de Receptor Nuclear , Animais , Disponibilidade Biológica , DNA/metabolismo , Replicação do DNA , Ferritinas/metabolismo , Ferro/metabolismo , Camundongos , Coativadores de Receptor Nuclear/genética , Fatores de Transcrição/metabolismo
17.
Cancers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681715

RESUMO

Cancer is a leading cause of death worldwide. If left untreated, tumors tend to grow and spread uncontrolled until the patient dies. To support this growth, cancer cells need large amounts of nutrients and growth factors that are supplied and distributed to the tumor tissue by the vascular system. The aberrant tumor vasculature shows deep morphological, molecular, and metabolic differences compared to the blood vessels belonging to the non-malignant tissues (also referred as normal). A better understanding of the metabolic mechanisms driving the differences between normal and tumor vasculature will allow the designing of new drugs with a higher specificity of action and fewer side effects to target tumors and improve a patient's life expectancy. In this review, we aim to summarize the main features of tumor endothelial cells (TECs) and shed light on the critical metabolic pathways that characterize these cells. A better understanding of such mechanisms will help to design innovative therapeutic strategies in healthy and diseased angiogenesis.

18.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35695893

RESUMO

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.


Assuntos
Células Endoteliais , Fatores de Transcrição Kruppel-Like , Mitocôndrias , Estresse Mecânico , Aterosclerose/patologia , Sistemas CRISPR-Cas , Sinalização do Cálcio , Células Endoteliais/metabolismo , Humanos , Inflamação , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase 5 , MAP Quinase Quinase Quinase 2 , MAP Quinase Quinase Quinase 3 , Mitocôndrias/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Espécies Reativas de Oxigênio
20.
Dev Cell ; 57(10): 1241-1256.e8, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35580611

RESUMO

Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.


Assuntos
Ácido Aspártico , Células Endoteliais , Alvo Mecanístico do Complexo 1 de Rapamicina , Neovascularização Patológica , Neovascularização Fisiológica , Animais , Ácido Aspártico/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Biossíntese de Proteínas/fisiologia , Pirimidinas , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA