Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Talanta ; 225: 121910, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592695

RESUMO

As a natural adsorbent, sisal (agave sisalana) fibers were used to extract Cu, Ni, Mn, and Zn from diesel oil samples for posterior determination (i.e., direct analytical measurements on the solid support) of the analytes by energy dispersive X-ray fluorescence spectrometry (EDXRF). In the proposed procedure, 0.2 g of sisal fiber was directly added to 5.0 mL of diesel oil contained in a glass tube. After 5 min of contact time, the mixture was filtered, and the collected fibers were oven-dried for 30 min at 70 °C. After drying, the analytes were quantified directly by EDXRF using the sisal fibers as a solid support. The calibration curves showed linear concentration ranges of 0.09-1.00, 0.12-1.00, 0.09-1.00, 0.06-1.0 µg g-1 for Cu, Ni, Mn, and Zn, respectively. The limits of detection (LOD) for Cu, Ni, Mn, and Zn were 0.03, 0.04, 0.03, and 0.02 µg g-1, respectively. The repeatability, evaluated by performing ten measurements at a concentration of 0.50 µg g-1 for each metal, with the results expressed in terms of the relative standard deviation (RSD), was 3.2, 6.5, 6.8, and 6.1% for Cu, Ni, Mn, and Zn, respectively. The results obtained by the proposed method were compared with the results obtained by a comparative method using inductively coupled plasma optical emission spectrometry, and both results showed good agreement. The proposed method was applied for Ni, Cu, Mn, and Zn determination in diesel oil samples collected from different gas stations.

2.
Org Biomol Chem ; 18(46): 9398-9427, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200155

RESUMO

Biothiols such as l-cysteine, l-homocysteine, and glutathione play essential roles in many biological processes, and are directly associated with several health conditions. Therefore, the development of fast, selective, sensitive, and inexpensive methods for quantitatively analyzing biothiols in aqueous solution, but especially in biological samples, is a very attractive research field. In this feature review, we have approached the relevance of biothiols' nucleophilicity to develop selective fluorogenic probes. Since biothiols have considerable structural similarity, relevant strategies are in full development, including several fluorescent molecular platforms, specific receptor sites, reaction conditions, and optical responses. All of these features are properly presented and discussed. Biothiol sensing protocols are based on traditional organic chemistry reactions such as (hetero)aromatic nucleophilic substitution, addition, and substitution at carbonyl carbon, conjugate addition, and nucleophilic substitution at saturated carbon, amongst others including combined processes; furthermore, mechanistic aspects are detailed herein, including some interesting historical contexts. The feasibility of related fluorogenic probes is illustrated by analysis in complex matrices such as serum, cells, tissues, and animal models. Applications of these reactions in more complex systems such as sulfhydryl-based peptides and proteins are also presented, aiming at functionalizing and detecting these nucleophiles. Most literature cited in this review is recent; however, some other prominent works are also detailed. It is believed that this review may be accessible for many academic levels and may efficiently contribute not only to popularizing science but also to the rational development of fluorogenic probes for biothiol sensing.


Assuntos
Cisteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...