Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 8861, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222177

RESUMO

Sea turtle eggs are heavily influenced by the environment in which they incubate, including effects on hatching success and hatchling viability (hatchling production). It is crucial to understand how the hatchling production of sea turtles is influenced by local climate and how potential changes in climate may impact future hatchling production. Generalized Additive Models were used to determine the relationship of six climatic variables at different temporal scales on loggerhead turtle (Caretta caretta) hatchling production at seventeen nesting beaches in Bahia, Espirito Santo, and Rio de Janeiro, Brazil. Using extreme and conservative climate change scenarios throughout the 21st century, potential impacts on future hatching success (the number of hatched eggs in a nest) were predicted using the climatic variable(s) that best described hatchling production at each nesting beach. Air temperature and precipitation were found to be the main drivers of hatchling production throughout Brazil. CMIP5 climate projections are for a warming of air temperature at all sites throughout the 21st century, while projections for precipitation vary regionally. The more tropical nesting beaches in Brazil, such as those in Bahia, are projected to experience declines in hatchling production, while the more temperate nesting beaches, such as those in Rio de Janeiro, are projected to experience increases in hatchling production by the end of the 21st century.

2.
PLoS One ; 13(11): e0204188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408043

RESUMO

Climate change is expected to impact animals that are heavily reliant on environmental factors, such as sea turtles, since the incubation of their eggs, hatching success and sex ratio are influenced by the environment in which eggs incubate. As climate change progresses it is therefore important to understand how climatic conditions influence their reproductive output and the ramifications to population stability. Here, we examined the influences of five climatic variables (air temperature, accumulated and average precipitation, humidity, solar radiation, and wind speed) at different temporal scales on hawksbill sea turtle (Eretmochelys imbricata) hatchling production at ten nesting beaches within two regions of Brazil (five nesting beaches in Rio Grande do Norte and five in Bahia). Air temperature and accumulated precipitation were the main climatic drivers of hawksbill hatching success (number of eggs hatched within a nest) across Brazil and in Rio Grande do Norte, while air temperature and average precipitation were the main climatic drivers of hatching success at Bahia. Solar radiation was the main climatic driver of emergence success (number of hatchlings that emerged from total hatched eggs within a nest) at both regions. Warmer temperatures and higher solar radiation had negative effects on hatchling production, while wetter conditions had a positive effect. Conservative and extreme climate scenarios show air temperatures are projected to increase at this site, while precipitation projections vary between scenarios and regions throughout the 21st century. We predicted hatching success of undisturbed nests (no recorded depredation or storm-related impacts) will decrease in Brazil by 2100 as a result of how this population is influenced by local climate. This study shows the determining effects of different climate variables and their combinations on an important and critically endangered marine species.


Assuntos
Mudança Climática , Modelos Biológicos , Tartarugas/fisiologia , Animais , Brasil , Temperatura Alta , Umidade , Reprodução/fisiologia
3.
J Therm Biol ; 44: 70-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086976

RESUMO

Climate change poses a unique threat to species with temperature dependent sex determination (TSD), such as marine turtles, where increases in temperature can result in extreme sex ratio biases. Knowledge of the primary sex ratio of populations with TSD is key for providing a baseline to inform management strategies and to accurately predict how future climate changes may affect turtle populations. However, there is a lack of robust data on offspring sex ratio at appropriate temporal and spatial scales to inform management decisions. To address this, we estimate the primary sex ratio of hawksbill hatchlings, Eretmochelys imbricata, from incubation duration of 5514 in situ nests from 10 nesting beaches from two regions in Brazil over the last 27 years. A strong female bias was estimated in all beaches, with 96% and 89% average female sex ratios produced in Bahia (BA) and Rio Grande do Norte (RN). Both inter-annual (BA, 88 to 99%; RN, 75 to 96% female) and inter-beach (BA, 92% to 97%; RN, 81% to 92% female) variability in mean offspring sex ratio was observed. These findings will guide management decisions in Brazil and provide further evidence of highly female-skew sex ratios in hawksbill turtles.


Assuntos
Aclimatação , Razão de Masculinidade , Tartarugas/fisiologia , Animais , Ecossistema , Feminino , Masculino , Comportamento de Nidação , Tartarugas/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...