Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;48(1): 46-50, 01/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-730439

RESUMO

In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.

2.
Braz J Med Biol Res ; 48(1): 46-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25493382

RESUMO

In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.

3.
J Neuroendocrinol ; 26(11): 817-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25180599

RESUMO

RFamide-related peptide-3 (RFRP-3), the orthologue of avian gonadotrophin-inhibitory hormone, and its receptor GPR147 have been recently identified in the human hypothalamus, and their roles in the regulation of reproductive axis has been studied. The present study aimed to investigate whether the presence of variants in the genes encoding human RFRP-3 (NPVF gene) and its receptor, GPR147 (NPFFR1 gene), is associated with the occurrence of gonadotrophin-releasing hormone-dependent pubertal disorders. Seventy-eight patients with idiopathic central precocious puberty (CPP) and 51 with normosmic isolated hypogonadotrophic hypogonadism (nIHH) were investigated. Fifty healthy subjects comprised the control group. The coding sequences of the NPVF and NPFFR1 genes were amplified and sequenced. Odds ratios (OR) were used to estimate the likelihood of CPP or nIHH in the presence of the described polymorphisms. All such polymorphisms have already been registered in the National Center for Biotechnology Information database. A three-nucleotide in frame deletion was identified in the NPVF gene (p.I71_K72), with a smaller proportion in the CPP (5%) compared to the nIHH (15%) group (P = 0.06). This results in the deletion of the isoleucine at position 71, adjacent to lysine at an endoproteolytic cleavage site of the precursor peptide. This polymorphism was associated with a lower risk of CPP (OR = 0.33; 95% confidence interval = 0.08-0.88); interestingly, only two men with nIHH were homozygotes for this variant. A total of five missense polymorphisms were found in the NPFFR1 gene, which encodes GPR147, with similar frequencies among groups and no association with pubertal timing. Our data suggest that RFRP-3/GPR147 may play secondary, modulatory roles on the regulation of pubertal development; a restraining modulatory effect of the NPVF p.I71_K72 variant on the activation of the gonadotrophic axis cannot be ruled out and deserves further investigation.


Assuntos
Hipogonadismo/genética , Neuropeptídeos/genética , Polimorfismo Genético , Puberdade Precoce/genética , Receptores de Neuropeptídeos/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropeptídeos/metabolismo , Puberdade Precoce/metabolismo , Receptores de Neuropeptídeos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA